[220226-1035] 11

1.3.11 Partial Order, a Poset. Apart from equivalence relations there is another type
of relations that plays a special role in mathematics. And it is a so called partial order, or a
partial ordered set, shortly a poset.

Definition. A relation R on a set A is called an order (partial order), if it is reflexive,
antisymmetric and transitive. A set A together with a partial order is often called a poset. [

1.3.12 Examples of Posets.

1. The well-known ordering of real numbers is an order in the above sense. Indeed, for all
real numbers a,b,c € R we have: a < a; if a < b and b < a then necessarily a = b; if
a<band b <cthen also a < ec.

2. Denote by A the set of all subsets of the set U. Then the relation C, “to be a subset”,
is an order on A. Verification of reflexivity, antisymmetry and transitivity is left to the
reader.

3. Let A = N, where N is the set of all natural numbers. The the relation of divisibility
defined by m |n if and only if m is a divisor of n (i.e. if n = k- m for some k € N) is
an order. Indeed, for all natural numbers m, n, k we have m | m; if m |n and n|m then
m =mn; if m|n and n|k then also m | k.

1.3.13 Proposition. If C is a partial order on a set A, then so is a restriction of C on any
subset B C A.

1.3.14 Hasse diagram of a poset. Let (A,C) is a poset for a finite set A. The covering
relation < is a subrelation of C defined by

a<b ifand only if a#b andifaE cE bthena=corb=c.

The Hasse diagram contains points for all a € A, representing the covering relation where
elements smaller are drawn lower than the bigger ones.

1.3.15 Smallest (or least) element, greatest (or biggest) element. Given a poset

(4,0).
e We say that a € A is the smallest element if for every b € A we have a C b.

e We say that a € A is the greatest element if for every b € A we have b C a.

1.3.16 Minimal elements, maximal elements. Given a poset (4,C).
e We say that a € A is a minimal element if for every b € A we have if b C a then b = a.

e We say that a € A is a mazimal element if for every b € A we have if a C b then b = a.

1.3.17 Facts. Given a poset (A,C).

e If it has the smallest element, then it is the only minimal element.

If it has the greatest element, then it is the only maximal element.

A poset can have more than one minimal and/or maximal element, but i this case it
does not have the smallest and/or greatest element.

A poset can have no minimal and/or no maximal element.

Any post (A,C) with a finite set A has at least one minimal and at least one maximal
element.
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1.3.18 Linear order, comparable and incomparable elements. Let (A, C) be a poset
and a,b € A. We say that a,b are comparable if a T b or b C a. Otherwise, they are called
incomparable.

A partial order C on A is called a linear order if any two elements of A are comparable.

1.3.19 Well-ordering. A partial order C on A is called well-ordering if any non-empty
subset M C has the smallest element.

Note, that a well-ordering is necessary a linear ordering; indeed, that any {a,b} C A then
if the smallest element is a then a C b, if it is b then b C a.

1.3.20 Well-ordering Principle. Let N be the set of all natural numbers. Then the
ordinary relation < ”to be smaller or equal to” is a well-ordering.

Remark. Well-ordering Principle cannot be either proved or disproved. We show later that
it is equivalent with the Principle of Mathematical Induction.

1.4 Mathematical Induction.

Mathematical induction is not only a device for proving assertions, but it can serve as a tool
for finding formulas and for defining sets. Let us start with a formulation of a weak principle
of mathematical induction.

1.4.1 Principle of (Weak) Mathematical Induction. Given a property V(n) that
may be true or false for n € N. Let ng be a natural number. Assume that the following two
conditions hold:

1) V(ng) holds.
2w) If V(n) is true for a natural number n > ng then so is V(n + 1).
Then V(n) is true for all natural numbers n > ng.

The condition 1) is called the basic step and the condition 2w) the inductive step.
Moreover, the assumption that V(n) is true is called the induction assumption (or inductive
hypothesis).

1.4.2 Example. Let us prove, using the mathematical induction, that for any set U with
n elements, it holds that the set P(U) of subsets of U has 2™ elements for any natural number
n > 0.

Solution. We shall proceed by mathematical induction. Denote U = {x1,x2,...,2,}.

Basic step: For n = 0 we have U = (), and () has just 1 = 2° subsets. Hence, the assertion
holds for n = 0.
Inductive step: Assume that any n element set has 2" subsets (the induction assumption).

Consider any n + 1 element set U, i.e. U = {z1,...,2n,Zpt1}. We can divide subsets
of U into two (disjoint) subsets A and B as follows: A = {X C U|xp41 € X} and
B={XCU|zp+1 € X}.

By induction assumption, A has 2" elements because it is a set of all subsets of
{z1,...,2,}. Moreover,

B = {YU{$H+1}‘Y - {xla"'axn}}'
Therefore, B has also 2™ elements. Hence, we get
P{x1,. . opy1})| = 2" + 2" = 2"+

which proves that any n + 1 element set U has 2n + 1 subsets.
We have proved that any set with n element has 2™ subsets for every n € N.
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1.4.3 The next example shows how we can use the principle of mathematical induction
to derive a formula.

Example. Derive a formula for . i2.
Solution. Our guess will be that it as some polynomial of degree 3. (It is a generalization of
the fact the Y i = %) A general polynomial of degree 3 is an® +bn? + cn + d.

Iy, i* =an®+bn?®+cn+dis a correct formula then it has to be valid for any n > 0.
If we would like to prove the formula using mathematical induction we should have to show
that the unknown coefficients a, b, ¢, d satisfy the basic and the inductive step.

Let us first examine the basic step:
For n =0, it must hold

0
O:Zi2:a~03+b~02+c~0+d:d.

Hence d = 0 and if the formula would be correct then Y., i* = an® 4+ bn? + cn.
Now, let us deal with the inductive step. Assume that > . i* = an® 4+ bn? + cn. We
have to show that Znﬁ)l i=a(n+12+b(n+1)2+c(n+1). We know that

1=

n+1 n
Y=+ (n+1)%
i=0 i=0

Hence the coefficients a, b, ¢ have to satisfy
an+12+b(n+1)2+cn+1)=an®>+bn*+cn+ (n+1)>

Two polynomials are equal if and only if the corresponding coefficients are equal. We get the
following system of linear equations

3a =1
3a + 2b = 2
a + b 4+ ¢ =1
The only solution of the system above is a = %, b= %, and ¢ = %. Therefore,

", 1 1 1 n(2n+1)(n+1)
2 _ 1.3, 1t 2 1 _ .
;Z B R 6

1.4.4 Theorem. The principle of mathematical induction follows from the well-ordering
principle.

Proof. Assume that for a property V(n) there is ng € N such that the following conditions
hold:

1. V(nyp) is true.
2. If V(n) is true for a natural number n > ng then so is V(n + 1).

Denote by M the set of all natural numbers n > ng for which V(n) is not true. Assume that
M has the smallest element, say ny. Clearly, ny # ng because V(ny) is true. Hence, ny > ng.
Take no = nq —1; then ny > ng. Since n; is the smallest element of M, no & M, which means
that V' (ng) is true. But then by the condition 2), V(ny) it true as well, indeed, n; = ny + 1.
A contradiction.

Therefore, M does not have the smallest element which, by well-ordering principle, means
that M = (. We have shown that V' (n) is true for all natural numbers n > ng, which is what
mathematical induction claims.

Marie Demlova: Discrete Mathematics Lect. 3: 3/3/2022



	Mathematical Induction.

