1.3.11 Partial Order, a Poset. Apart from equivalence relations there is another type of relations that plays a special role in mathematics. And it is a so called partial order, or a partial ordered set, shortly a poset.
Definition. A relation R on a set A is called an order (partial order), if it is reflexive, antisymmetric and transitive. A set A together with a partial order is often called a poset.

1.3.12 Examples of Posets.

1. The well-known ordering of real numbers is an order in the above sense. Indeed, for all real numbers $a, b, c \in \mathbb{R}$ we have: $a \leq a$; if $a \leq b$ and $b \leq a$ then necessarily $a=b$; if $a \leq b$ and $b \leq c$ then also $a \leq c$.
2. Denote by A the set of all subsets of the set U. Then the relation \subseteq, "to be a subset", is an order on A. Verification of reflexivity, antisymmetry and transitivity is left to the reader.
3. Let $A=\mathbb{N}$, where \mathbb{N} is the set of all natural numbers. The the relation of divisibility defined by $m \mid n$ if and only if m is a divisor of n (i.e. if $n=k \cdot m$ for some $k \in \mathbb{N}$) is an order. Indeed, for all natural numbers m, n, k we have $m \mid m$; if $m \mid n$ and $n \mid m$ then $m=n$; if $m \mid n$ and $n \mid k$ then also $m \mid k$.
1.3.13 Proposition. If \sqsubseteq is a partial order on a set A, then so is a restriction of \sqsubseteq on any subset $B \subseteq A$.
1.3.14 Hasse diagram of a poset. Let (A, \sqsubseteq) is a poset for a finite set A. The covering relation \prec is a subrelation of \sqsubseteq defined by

$$
a \prec b \text { if and only if } a \neq b \text { and if } a \sqsubseteq c \sqsubseteq b \text { then } a=c \text { or } b=c \text {. }
$$

The Hasse diagram contains points for all $a \in A$, representing the covering relation where elements smaller are drawn lower than the bigger ones.
1.3.15 Smallest (or least) element, greatest (or biggest) element. Given a poset (A, \sqsubseteq).

- We say that $a \in A$ is the smallest element if for every $b \in A$ we have $a \sqsubseteq b$.
- We say that $a \in A$ is the greatest element if for every $b \in A$ we have $b \sqsubseteq a$.
1.3.16 Minimal elements, maximal elements. Given a poset (A, \sqsubseteq).
- We say that $a \in A$ is a minimal element if for every $b \in A$ we have if $b \sqsubseteq a$ then $b=a$.
- We say that $a \in A$ is a maximal element if for every $b \in A$ we have if $a \sqsubseteq b$ then $b=a$.
1.3.17 Facts. Given a poset (A, \sqsubseteq).
- If it has the smallest element, then it is the only minimal element.
- If it has the greatest element, then it is the only maximal element.
- A poset can have more than one minimal and/or maximal element, but i this case it does not have the smallest and/or greatest element.
- A poset can have no minimal and/or no maximal element.
- Any post (A, \sqsubseteq) with a finite set A has at least one minimal and at least one maximal element.
1.3.18 Linear order, comparable and incomparable elements. Let (A, \sqsubseteq) be a poset and $a, b \in A$. We say that a, b are comparable if $a \sqsubseteq b$ or $b \sqsubseteq a$. Otherwise, they are called incomparable.

A partial order \sqsubseteq on A is called a linear order if any two elements of A are comparable.
1.3.19 Well-ordering. A partial order \sqsubseteq on A is called well-ordering if any non-empty subset $M \subseteq$ has the smallest element.

Note, that a well-ordering is necessary a linear ordering; indeed, that any $\{a, b\} \subseteq A$ then if the smallest element is a then $a \sqsubseteq b$, if it is b then $b \sqsubseteq a$.
1.3.20 Well-ordering Principle. Let \mathbb{N} be the set of all natural numbers. Then the ordinary relation \leq "to be smaller or equal to" is a well-ordering.
Remark. Well-ordering Principle cannot be either proved or disproved. We show later that it is equivalent with the Principle of Mathematical Induction.

1.4 Mathematical Induction.

Mathematical induction is not only a device for proving assertions, but it can serve as a tool for finding formulas and for defining sets. Let us start with a formulation of a weak principle of mathematical induction.
1.4.1 Principle of (Weak) Mathematical Induction. Given a property $V(n)$ that may be true or false for $n \in \mathbb{N}$. Let n_{0} be a natural number. Assume that the following two conditions hold:

1) $V\left(n_{0}\right)$ holds.
$2 \mathrm{w})$ If $V(n)$ is true for a natural number $n \geq n_{0}$ then so is $V(n+1)$.
Then $V(n)$ is true for all natural numbers $n \geq n_{0}$.
The condition 1) is called the basic step and the condition 2 w) the inductive step. Moreover, the assumption that $V(n)$ is true is called the induction assumption (or inductive hypothesis).
1.4.2 Example. Let us prove, using the mathematical induction, that for any set U with n elements, it holds that the set $\mathcal{P}(U)$ of subsets of U has 2^{n} elements for any natural number $n \geq 0$.
Solution. We shall proceed by mathematical induction. Denote $U=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
Basic step: For $n=0$ we have $U=\emptyset$, and \emptyset has just $1=2^{0}$ subsets. Hence, the assertion holds for $n=0$.
Inductive step: Assume that any n element set has 2^{n} subsets (the induction assumption).
Consider any $n+1$ element set U, i.e. $U=\left\{x_{1}, \ldots, x_{n}, x_{n+1}\right\}$. We can divide subsets of U into two (disjoint) subsets A and B as follows: $A=\left\{X \subseteq U \mid x_{n+1} \notin X\right\}$ and $B=\left\{X \subseteq U \mid x_{n+1} \in X\right\}$.

By induction assumption, A has 2^{n} elements because it is a set of all subsets of $\left\{x_{1}, \ldots, x_{n}\right\}$. Moreover,

$$
B=\left\{Y \cup\left\{x_{n+1}\right\} \mid Y \subseteq\left\{x_{1}, \ldots, x_{n}\right\}\right\} .
$$

Therefore, B has also 2^{n} elements. Hence, we get

$$
\left|\mathcal{P}\left(\left\{x_{1}, \ldots, x_{n+1}\right\}\right)\right|=2^{n}+2^{n}=2^{n+1}
$$

which proves that any $n+1$ element set U has $2 n+1$ subsets.
We have proved that any set with n element has 2^{n} subsets for every $n \in \mathbb{N}$.
1.4.3 The next example shows how we can use the principle of mathematical induction to derive a formula.

Example. Derive a formula for $\sum_{i=0}^{n} i^{2}$.
Solution. Our guess will be that it as some polynomial of degree 3. (It is a generalization of the fact the $\sum_{i=0}^{n} i=\frac{n(n+1)}{2}$.) A general polynomial of degree 3 is $a n^{3}+b n^{2}+c n+d$.

If $\sum_{i=0}^{n} i^{2}=a n^{3}+b n^{2}+c n+d$ is a correct formula then it has to be valid for any $n \geq 0$. If we would like to prove the formula using mathematical induction we should have to show that the unknown coefficients a, b, c, d satisfy the basic and the inductive step.

Let us first examine the basic step:
For $n=0$, it must hold

$$
0=\sum_{i=0}^{0} i^{2}=a \cdot 0^{3}+b \cdot 0^{2}+c \cdot 0+d=d
$$

Hence $d=0$ and if the formula would be correct then $\sum_{i=0}^{n} i^{2}=a n^{3}+b n^{2}+c n$.
Now, let us deal with the inductive step. Assume that $\sum_{i=0}^{n} i^{2}=a n^{3}+b n^{2}+c n$. We have to show that $\sum_{i=0}^{n+1} i^{2}=a(n+1)^{3}+b(n+1)^{2}+c(n+1)$. We know that

$$
\sum_{i=0}^{n+1} i^{2}=\sum_{i=0}^{n} i^{2}+(n+1)^{2}
$$

Hence the coefficients a, b, c have to satisfy

$$
a(n+1)^{3}+b(n+1)^{2}+c(n+1)=a n^{3}+b n^{2}+c n+(n+1)^{3} .
$$

Two polynomials are equal if and only if the corresponding coefficients are equal. We get the following system of linear equations

$$
\begin{aligned}
3 a & =1 \\
3 a+2 b & =2 \\
a+b+c & =1
\end{aligned}
$$

The only solution of the system above is $a=\frac{1}{3}, b=\frac{1}{2}$, and $c=\frac{1}{6}$. Therefore,

$$
\sum_{i=0}^{n} i^{2}=\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n=\frac{n(2 n+1)(n+1)}{6}
$$

1.4.4 Theorem. The principle of mathematical induction follows from the well-ordering principle.
Proof. Assume that for a property $V(n)$ there is $n_{0} \in \mathbb{N}$ such that the following conditions hold:

1. $V\left(n_{0}\right)$ is true
2. If $V(n)$ is true for a natural number $n \geq n_{0}$ then so is $V(n+1)$.

Denote by M the set of all natural numbers $n \geq n_{0}$ for which $V(n)$ is not true. Assume that M has the smallest element, say n_{1}. Clearly, $n_{1} \neq n_{0}$ because $V\left(n_{0}\right)$ is true. Hence, $n_{1}>n_{0}$. Take $n_{2}=n_{1}-1$; then $n_{2} \geq n_{0}$. Since n_{1} is the smallest element of $M, n_{2} \notin M$, which means that $V\left(n_{2}\right)$ is true. But then by the condition 2), $V\left(n_{1}\right)$ it true as well, indeed, $n_{1}=n_{2}+1$. A contradiction.

Therefore, M does not have the smallest element which, by well-ordering principle, means that $M=\emptyset$. We have shown that $V(n)$ is true for all natural numbers $n \geq n_{0}$, which is what mathematical induction claims.

