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1.3.11 Partial Order, a Poset. Apart from equivalence relations there is another type
of relations that plays a special role in mathematics. And it is a so called partial order, or a
partial ordered set, shortly a poset.

Definition. A relation R on a set A is called an order (partial order), if it is reflexive,
antisymmetric and transitive. A set A together with a partial order is often called a poset. �

1.3.12 Examples of Posets.

1. The well-known ordering of real numbers is an order in the above sense. Indeed, for all
real numbers a, b, c ∈ R we have: a ≤ a; if a ≤ b and b ≤ a then necessarily a = b; if
a ≤ b and b ≤ c then also a ≤ c.

2. Denote by A the set of all subsets of the set U . Then the relation ⊆, “to be a subset”,
is an order on A. Verification of reflexivity, antisymmetry and transitivity is left to the
reader.

3. Let A = N, where N is the set of all natural numbers. The the relation of divisibility
defined by m |n if and only if m is a divisor of n (i.e. if n = k ·m for some k ∈ N) is
an order. Indeed, for all natural numbers m,n, k we have m |m; if m |n and n |m then
m = n; if m |n and n | k then also m | k.

1.3.13 Proposition. If v is a partial order on a set A, then so is a restriction of v on any
subset B ⊆ A.

1.3.14 Hasse diagram of a poset. Let (A,v) is a poset for a finite set A. The covering
relation ≺ is a subrelation of v defined by

a ≺ b if and only if a 6= b and if a v c v b then a = c or b = c.

The Hasse diagram contains points for all a ∈ A, representing the covering relation where
elements smaller are drawn lower than the bigger ones.

1.3.15 Smallest (or least) element, greatest (or biggest) element. Given a poset
(A,v).

• We say that a ∈ A is the smallest element if for every b ∈ A we have a v b.

• We say that a ∈ A is the greatest element if for every b ∈ A we have b v a.

1.3.16 Minimal elements, maximal elements. Given a poset (A,v).

• We say that a ∈ A is a minimal element if for every b ∈ A we have if b v a then b = a.

• We say that a ∈ A is a maximal element if for every b ∈ A we have if a v b then b = a.

1.3.17 Facts. Given a poset (A,v).

• If it has the smallest element, then it is the only minimal element.

• If it has the greatest element, then it is the only maximal element.

• A poset can have more than one minimal and/or maximal element, but i this case it
does not have the smallest and/or greatest element.

• A poset can have no minimal and/or no maximal element.

• Any post (A,v) with a finite set A has at least one minimal and at least one maximal
element.
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1.3.18 Linear order, comparable and incomparable elements. Let (A,v) be a poset
and a, b ∈ A. We say that a, b are comparable if a v b or b v a. Otherwise, they are called
incomparable.

A partial order v on A is called a linear order if any two elements of A are comparable.

1.3.19 Well-ordering. A partial order v on A is called well-ordering if any non-empty
subset M ⊆ has the smallest element.

Note, that a well-ordering is necessary a linear ordering; indeed, that any {a, b} ⊆ A then
if the smallest element is a then a v b, if it is b then b v a.

1.3.20 Well-ordering Principle. Let N be the set of all natural numbers. Then the
ordinary relation ≤ ”to be smaller or equal to” is a well-ordering.

Remark. Well-ordering Principle cannot be either proved or disproved. We show later that
it is equivalent with the Principle of Mathematical Induction.

1.4 Mathematical Induction.

Mathematical induction is not only a device for proving assertions, but it can serve as a tool
for finding formulas and for defining sets. Let us start with a formulation of a weak principle
of mathematical induction.

1.4.1 Principle of (Weak) Mathematical Induction. Given a property V (n) that
may be true or false for n ∈ N. Let n0 be a natural number. Assume that the following two
conditions hold:

1) V (n0) holds.

2w) If V (n) is true for a natural number n ≥ n0 then so is V (n + 1).

Then V (n) is true for all natural numbers n ≥ n0.

The condition 1) is called the basic step and the condition 2w) the inductive step.
Moreover, the assumption that V (n) is true is called the induction assumption (or inductive
hypothesis).

1.4.2 Example. Let us prove, using the mathematical induction, that for any set U with
n elements, it holds that the set P(U) of subsets of U has 2n elements for any natural number
n ≥ 0.

Solution. We shall proceed by mathematical induction. Denote U = {x1, x2, . . . , xn}.
Basic step: For n = 0 we have U = ∅, and ∅ has just 1 = 20 subsets. Hence, the assertion
holds for n = 0.

Inductive step: Assume that any n element set has 2n subsets (the induction assumption).

Consider any n + 1 element set U , i.e. U = {x1, . . . , xn, xn+1}. We can divide subsets
of U into two (disjoint) subsets A and B as follows: A = {X ⊆ U |xn+1 6∈ X} and
B = {X ⊆ U |xn+1 ∈ X}.

By induction assumption, A has 2n elements because it is a set of all subsets of
{x1, . . . , xn}. Moreover,

B = {Y ∪ {xn+1} |Y ⊆ {x1, . . . , xn}}.

Therefore, B has also 2n elements. Hence, we get

|P({x1, . . . , xn+1})| = 2n + 2n = 2n+1

which proves that any n + 1 element set U has 2n + 1 subsets.

We have proved that any set with n element has 2n subsets for every n ∈ N.
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1.4.3 The next example shows how we can use the principle of mathematical induction
to derive a formula.

Example. Derive a formula for
∑n

i=0 i2.

Solution. Our guess will be that it as some polynomial of degree 3. (It is a generalization of

the fact the
∑n

i=0 i = n(n+1)
2 .) A general polynomial of degree 3 is an3 + b n2 + c n + d.

If
∑n

i=0 i2 = an3 + b n2 + c n+d is a correct formula then it has to be valid for any n ≥ 0.
If we would like to prove the formula using mathematical induction we should have to show
that the unknown coefficients a, b, c, d satisfy the basic and the inductive step.

Let us first examine the basic step:
For n = 0, it must hold

0 =

0∑
i=0

i2 = a · 03 + b · 02 + c · 0 + d = d.

Hence d = 0 and if the formula would be correct then
∑n

i=0 i2 = an3 + b n2 + c n.

Now, let us deal with the inductive step. Assume that
∑n

i=0 i2 = an3 + b n2 + c n. We

have to show that
∑n+1

i=0 i2 = a (n + 1)3 + b (n + 1)2 + c (n + 1). We know that

n+1∑
i=0

i2 =

n∑
i=0

i2 + (n + 1)2.

Hence the coefficients a, b, c have to satisfy

a (n + 1)3 + b (n + 1)2 + c (n + 1) = an3 + b n2 + c n + (n + 1)3.

Two polynomials are equal if and only if the corresponding coefficients are equal. We get the
following system of linear equations

3a = 1
3a + 2b = 2
a + b + c = 1

The only solution of the system above is a = 1
3 , b = 1

2 , and c = 1
6 . Therefore,

n∑
i=0

i2 =
1

3
n3 +

1

2
n2 +

1

6
n =

n(2n + 1)(n + 1)

6
.

1.4.4 Theorem. The principle of mathematical induction follows from the well-ordering
principle.

Proof. Assume that for a property V (n) there is n0 ∈ N such that the following conditions
hold:

1. V (n0) is true.

2. If V (n) is true for a natural number n ≥ n0 then so is V (n + 1).

Denote by M the set of all natural numbers n ≥ n0 for which V (n) is not true. Assume that
M has the smallest element, say n1. Clearly, n1 6= n0 because V (n0) is true. Hence, n1 > n0.
Take n2 = n1−1; then n2 ≥ n0. Since n1 is the smallest element of M , n2 6∈M , which means
that V (n2) is true. But then by the condition 2), V (n1) it true as well, indeed, n1 = n2 + 1.
A contradiction.

Therefore, M does not have the smallest element which, by well-ordering principle, means
that M = ∅. We have shown that V (n) is true for all natural numbers n ≥ n0, which is what
mathematical induction claims.
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