1.3.11 Partial Order, a Poset. Apart from equivalence relations there is another type of relations that plays a special role in mathematics. And it is a so called partial order, or a partial ordered set, shortly a poset.

Definition. A relation R on a set A is called an *order (partial order)*, if it is reflexive, antisymmetric and transitive. A set A together with a partial order is often called a *poset*. \Box

1.3.12 Examples of Posets.

- 1. The well-known ordering of real numbers is an order in the above sense. Indeed, for all real numbers $a, b, c \in \mathbb{R}$ we have: $a \leq a$; if $a \leq b$ and $b \leq a$ then necessarily a = b; if $a \leq b$ and $b \leq c$ then also $a \leq c$.
- 2. Denote by A the set of all subsets of the set U. Then the relation \subseteq , "to be a subset", is an order on A. Verification of reflexivity, antisymmetry and transitivity is left to the reader.
- 3. Let $A = \mathbb{N}$, where \mathbb{N} is the set of all natural numbers. The the relation of divisibility defined by $m \mid n$ if and only if m is a divisor of n (i.e. if $n = k \cdot m$ for some $k \in \mathbb{N}$) is an order. Indeed, for all natural numbers m, n, k we have $m \mid m$; if $m \mid n$ and $n \mid m$ then m = n; if $m \mid n$ and $n \mid k$ then also $m \mid k$.

1.3.13 Proposition. If \sqsubseteq is a partial order on a set A, then so is a restriction of \sqsubseteq on any subset $B \subseteq A$.

1.3.14 Hasse diagram of a poset. Let (A, \sqsubseteq) is a poset for a finite set A. The covering relation \prec is a subrelation of \sqsubseteq defined by

 $a \prec b$ if and only if $a \neq b$ and if $a \sqsubseteq c \sqsubseteq b$ then a = c or b = c.

The *Hasse diagram* contains points for all $a \in A$, representing the covering relation where elements smaller are drawn lower than the bigger ones.

1.3.15 Smallest (or least) element, greatest (or biggest) element. Given a poset (A, \sqsubseteq) .

- We say that $a \in A$ is the *smallest element* if for every $b \in A$ we have $a \sqsubseteq b$.
- We say that $a \in A$ is the greatest element if for every $b \in A$ we have $b \sqsubseteq a$.

1.3.16 Minimal elements, maximal elements. Given a poset (A, \sqsubseteq) .

- We say that $a \in A$ is a *minimal element* if for every $b \in A$ we have if $b \sqsubseteq a$ then b = a.
- We say that $a \in A$ is a maximal element if for every $b \in A$ we have if $a \sqsubseteq b$ then b = a.

1.3.17 Facts. Given a poset (A, \sqsubseteq) .

- If it has the smallest element, then it is the only minimal element.
- If it has the greatest element, then it is the only maximal element.
- A poset can have more than one minimal and/or maximal element, but i this case it does not have the smallest and/or greatest element.
- A poset can have no minimal and/or no maximal element.
- Any post (A, \sqsubseteq) with a finite set A has at least one minimal and at least one maximal element.

1.3.18 Linear order, comparable and incomparable elements. Let (A, \sqsubseteq) be a poset and $a, b \in A$. We say that a, b are *comparable* if $a \sqsubseteq b$ or $b \sqsubseteq a$. Otherwise, they are called *incomparable*.

A partial order \sqsubseteq on A is called a *linear order* if any two elements of A are comparable.

1.3.19 Well-ordering. A partial order \sqsubseteq on A is called *well-ordering* if any non-empty subset $M \subseteq$ has the smallest element.

Note, that a well-ordering is necessary a linear ordering; indeed, that any $\{a, b\} \subseteq A$ then if the smallest element is a then $a \sqsubseteq b$, if it is b then $b \sqsubseteq a$.

1.3.20 Well-ordering Principle. Let \mathbb{N} be the set of all natural numbers. Then the ordinary relation \leq "to be smaller or equal to" is a well-ordering.

Remark. Well-ordering Principle cannot be either proved or disproved. We show later that it is equivalent with the Principle of Mathematical Induction.

1.4 Mathematical Induction.

Mathematical induction is not only a device for proving assertions, but it can serve as a tool for finding formulas and for defining sets. Let us start with a formulation of a weak principle of mathematical induction.

1.4.1 Principle of (Weak) Mathematical Induction. Given a property V(n) that may be true or false for $n \in \mathbb{N}$. Let n_0 be a natural number. Assume that the following two conditions hold:

1) $V(n_0)$ holds.

2w) If V(n) is true for a natural number $n \ge n_0$ then so is V(n+1).

Then V(n) is true for all natural numbers $n \ge n_0$.

The condition 1) is called the *basic step* and the condition 2w) the *inductive step*. Moreover, the assumption that V(n) is true is called the *induction assumption* (or *inductive hypothesis*).

1.4.2 Example. Let us prove, using the mathematical induction, that for any set U with n elements, it holds that the set $\mathcal{P}(U)$ of subsets of U has 2^n elements for any natural number $n \ge 0$.

Solution. We shall proceed by mathematical induction. Denote $U = \{x_1, x_2, \dots, x_n\}$.

Basic step: For n = 0 we have $U = \emptyset$, and \emptyset has just $1 = 2^0$ subsets. Hence, the assertion holds for n = 0.

Inductive step: Assume that any n element set has 2^n subsets (the induction assumption).

Consider any n + 1 element set U, i.e. $U = \{x_1, \ldots, x_n, x_{n+1}\}$. We can divide subsets of U into two (disjoint) subsets A and B as follows: $A = \{X \subseteq U | x_{n+1} \notin X\}$ and $B = \{X \subseteq U | x_{n+1} \in X\}$.

By induction assumption, A has 2^n elements because it is a set of all subsets of $\{x_1, \ldots, x_n\}$. Moreover,

 $B = \{Y \cup \{x_{n+1}\} \mid Y \subseteq \{x_1, \dots, x_n\}\}.$

Therefore, B has also 2^n elements. Hence, we get

$$|\mathcal{P}(\{x_1,\ldots,x_{n+1}\})| = 2^n + 2^n = 2^{n+1}$$

which proves that any n + 1 element set U has 2n + 1 subsets.

We have proved that any set with n element has 2^n subsets for every $n \in \mathbb{N}$.

Marie Demlova: Discrete Mathematics

1.4.3 The next example shows how we can use the principle of mathematical induction to derive a formula.

Example. Derive a formula for $\sum_{i=0}^{n} i^2$.

Solution. Our guess will be that it as some polynomial of degree 3. (It is a generalization of the fact the $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$.) A general polynomial of degree 3 is $a n^3 + b n^2 + c n + d$.

If $\sum_{i=0}^{n} i^2 = a n^3 + b n^2 + c n + d$ is a correct formula then it has to be valid for any $n \ge 0$. If we would like to prove the formula using mathematical induction we should have to show that the unknown coefficients a, b, c, d satisfy the basic and the inductive step.

Let us first examine the basic step: For n = 0, it must hold

$$0 = \sum_{i=0}^{0} i^{2} = a \cdot 0^{3} + b \cdot 0^{2} + c \cdot 0 + d = d$$

Hence d = 0 and if the formula would be correct then $\sum_{i=0}^{n} i^2 = a n^3 + b n^2 + c n$.

Now, let us deal with the inductive step. Assume that $\sum_{i=0}^{n} i^2 = a n^3 + b n^2 + c n$. We have to show that $\sum_{i=0}^{n+1} i^2 = a (n+1)^3 + b (n+1)^2 + c (n+1)$. We know that

$$\sum_{i=0}^{n+1} i^2 = \sum_{i=0}^{n} i^2 + (n+1)^2.$$

Hence the coefficients a, b, c have to satisfy

$$a(n+1)^3 + b(n+1)^2 + c(n+1) = an^3 + bn^2 + cn + (n+1)^3.$$

Two polynomials are equal if and only if the corresponding coefficients are equal. We get the following system of linear equations

The only solution of the system above is $a = \frac{1}{3}$, $b = \frac{1}{2}$, and $c = \frac{1}{6}$. Therefore,

$$\sum_{i=0}^{n} i^{2} = \frac{1}{3}n^{3} + \frac{1}{2}n^{2} + \frac{1}{6}n = \frac{n(2n+1)(n+1)}{6}$$

1.4.4 Theorem. The principle of mathematical induction follows from the well-ordering principle.

Proof. Assume that for a property V(n) there is $n_0 \in \mathbb{N}$ such that the following conditions hold:

- 1. $V(n_0)$ is true.
- 2. If V(n) is true for a natural number $n \ge n_0$ then so is V(n+1).

Denote by M the set of all natural numbers $n \ge n_0$ for which V(n) is not true. Assume that M has the smallest element, say n_1 . Clearly, $n_1 \ne n_0$ because $V(n_0)$ is true. Hence, $n_1 > n_0$. Take $n_2 = n_1 - 1$; then $n_2 \ge n_0$. Since n_1 is the smallest element of M, $n_2 \ne M$, which means that $V(n_2)$ is true. But then by the condition 2), $V(n_1)$ it true as well, indeed, $n_1 = n_2 + 1$. A contradiction.

Therefore, M does not have the smallest element which, by well-ordering principle, means that $M = \emptyset$. We have shown that V(n) is true for all natural numbers $n \ge n_0$, which is what mathematical induction claims.