1.4.5 Principle of mathematical induction - continuation

Example. Derive a formula for $\sum_{i=0}^{n} i^{2}$ and prove it.
Solution. Our guess will be that it as some polynomial of degree 3. (It is a generalization of the fact the $\sum_{i=0}^{n} i=\frac{n(n+1)}{2}$.) A general polynomial of degree 3 is $a n^{3}+b n^{2}+c n+d$.

If $\sum_{i=0}^{n} i^{2}=a n^{3}+b n^{2}+c n+d$ is a correct formula then it has to be valid for any $n \geq 0$. If we would like to prove the formula using mathematical induction we should have to show that the unknown coefficients a, b, c, d satisfy the basic and the inductive step.

Let us first examine the basic step:
For $n=0$, it must hold

$$
0=\sum_{i=0}^{0} i^{2}=a \cdot 0^{3}+b \cdot 0^{2}+c \cdot 0+d=d
$$

Hence $d=0$ and if the formula will be correct then $\sum_{i=0}^{n} i^{2}=a n^{3}+b n^{2}+c n$.
Now, let us deal with the inductive step. Assume that $\sum_{i=0}^{n} i^{2}=a n^{3}+b n^{2}+c n$. We have to show that $\sum_{i=0}^{n+1} i^{2}=a(n+1)^{3}+b(n+1)^{2}+c(n+1)$. We know that

$$
\sum_{i=0}^{n+1} i^{2}=\sum_{i=0}^{n} i^{2}+(n+1)^{2}
$$

Hence the coefficients a, b, c have to satisfy

$$
a(n+1)^{3}+b(n+1)^{2}+c(n+1)=a n^{3}+b n^{2}+c n+(n+1)^{2} .
$$

Two polynomials are equal if, and only if the corresponding coefficients are equal. We get the following system of linear equations

$$
\begin{aligned}
3 a & =1 \\
3 a+2 b & =2 \\
a+b+c & =1
\end{aligned}
$$

The only solution of the system above is $a=\frac{1}{3}, b=\frac{1}{2}$, and $c=\frac{1}{6}$. Therefore,

$$
\sum_{i=0}^{n} i^{2}=\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n=\frac{n(2 n+1)(n+1)}{6}
$$

1.4.6 Theorem. The principle of mathematical induction follows from the well-ordering principle.

Proof. Assume that for a property $V(n)$ there is $n_{0} \in \mathbb{N}$ such that the following conditions hold:

1. $V\left(n_{0}\right)$ is true.
2. If $V(n)$ is true for a natural number $n \geq n_{0}$ then so is $V(n+1)$.

Denote by M the set of all natural numbers $n \geq n_{0}$ for which $V(n)$ is not true. Assume that M has the smallest element, say n_{1}. Clearly, $n_{1} \neq n_{0}$ because $V\left(n_{0}\right)$ is true. Hence, $n_{1}>n_{0}$. Take $n_{2}=n_{1}-1$; then $n_{2} \geq n_{0}$. Since n_{1} is the smallest element of $M, n_{2} \notin M$, which means that $V\left(n_{2}\right)$ is true. But then by the condition 2), $V\left(n_{1}\right)$ it true as well, indeed, $n_{1}=n_{2}+1$. A contradiction.

Therefore, M does not have smallest element which, by well-ordering principle, means that $M=\emptyset$. We have shown that $V(n)$ is true for all natural numbers $n \geq n_{0}$, which is what principle of mathematical induction claims.
1.4.7 Remark. The principle of weak mathematical induction is not always sufficient when e.g. proving some facts. Here, we introduce a new version of mathematical induction, called a strong mathematical induction, which is equivalent to the weak one but helps to solve situations where the weak one does not suffice.
1.4.8 Principle of Strong Mathematical Induction. Given a property $V(n)$ that may be true or false for $n \in \mathbb{N}$. Let n_{0} be a natural number. Assume that the following conditions hold:

1. $V\left(n_{0}\right)$ holds.
2. If $V(k)$ holds for every natural number $k, n_{0} \leq k<n$, then so does $V(n)$.

Then $V(n)$ holds for all natural numbers $n \geq n_{0}$.
Notice, that the principle of strong mathematical induction differs from the weak one in the second condition. In the weak induction we assume that $V(n-1)$ is true and from it we deduce that $V(n)$ is true as well. In the strong version, the induction assumption is that $V(k)$ holds for every $k, n_{0} \leq k<n$. From this assumption we show that $V(n)$ is true as well.
1.4.9 Example. Let us prove by strong mathematical induction the following statement: Every natural number $n \geq 2$ is a product of one or more primes.

Recall that: A prime number is a natural number $p>1$ such that if $p=r \cdot s$ for natural numbers r, s then either $r=1$ or $s=1$. A natural number $n>1$ which is not a prime is called a composite number.

Solution: We proceed by strong mathematical induction.
Basic step. The number $n=2$ is a prime number. So the statement is true for $n=2$.
Inductive step. Assume that all natural numbers k such that $2 \leq k<n$ are products of one or more primes. Consider the number n. Then either n is a prime number of n is a composite number. If n is a prime then it is a product of one prime number.

Assume that n is a composite number. Then $n=r \cdot s$ where $1<r, s<n$. From the induction assumption, we know that r and s are products of one or more primes, hence n is a product of primes as well.
1.4.10 Theorem. The weak and the strong mathematical induction are equivalent.

Justification. It is not difficult to see that whenever a property $V(n)$ satisfies 2 w$)$ and $V(n)$ is true, then $V(k)$ is true for every $k, n_{0} \leq k \leq n$. Indeed, assume that there is $k, n_{0} \leq k \leq n$. Take the smallest one and denote it by k_{0}. Then $k_{0}>n_{0}$, since $V\left(n_{0}\right)$ is true by the condition 1). Consider $k_{0}-1 \geq n_{0}$; because k_{0} is the smallest one for which $V(k)$ is not true, $V\left(k_{0}-1\right)$ is true. But in this case, the condition $V\left(k_{0}\right)$ must be true, this follows from the condition 2 w). A contradiction.
1.4.11 Theorem. The well-ordering principle follows from the strong version of mathematical induction.

Proof. Assume that the strong version of mathematical induction holds. Let M be a set of natural numbers that does not have the smallest element. We shall show that M is empty.

Consider the property $V(n)$ defined by

$$
V(n) \text { is true if, and only if } n \notin M \text {. }
$$

The property $V(n)$ satisfies 1) for $n_{0}=0$, and 2 s). Indeed:

1. Basic step. $V(0)$ is true. Indeed, if $0 \in M$ then 0 is the smallest element of M, which contradicts to the fact that M does not have the smallest element.

2s. Inductive step. Assume that for all $k \leq n$ it holds $k \notin M(V(k)$ is true). Then $n+1$ cannot be in M, indeed it would have been the smallest element of M. Hence, $V(n+1)$ is true.

By strong mathematical induction, $V(n)$ is true for all $n \in \mathbb{N}$, which means that no natural number belongs to M; therefore M is empty.
1.4.12 Tiling Problem. A right tromino is a figure consisting in three squares of the same size arranged to a right angle. A deficient board of $2^{2 n}$ squares is a square with one square missing.

Is it possible to cover a deficient boar by trominos for every $n \geq 1$.
The fact that the answer is yes, can be proved by induction.
Basic step. For $n=1$ a deficient board of 2^{2} squares is just one tromino.
Inductive step. Assume that any deficient board of $2^{2 n}$ squares can be covered by trominos. Consider a deficient board of $2^{2(n+1)}$ squares. Divide the board into 4 boards of $2^{2 n}$ squares, one of which is a deficient board. Place one tromino in the center so that now all 4 boards are deficient. Since now all the 4 boards are deficient, we can use the induction assumption to cover it by trominos.
1.4.13 Hanoi Towers. Three pegs A, B, C are given together with n discs of different size. All discs are placed to peg A. The task is to move all n discs to peg B or C. The rule for moving a disc is the following: A disc can be placed only on a bigger one.

Compute the smallest number of moves that are needed to move n discs from peg A to peg B.

To move the biggest disc (which is the bottom one on peg A) one must first move all $n-1$ smaller discs to one of the pegs B or C, then the biggest one must be moved to an empty peg. Finally, all the $n-1$ smaller ones must move on the biggest one.

Hence the following formula for the number of moves $T(n)$ holds:

$$
T(n)=2 \cdot T(n-1)+1, \quad T(1)=1
$$

It is not difficult to guess and afterwards prove that

$$
T(n)-\sum_{i=0}^{n} 2^{n-1}=2^{n}-1
$$

1.4.14 Structural Induction. Mathematical induction is used not only to prove some statement but also to define a set. Let us start with an example.

Example. The set B of all binary words can be defined as follows:
Basic step. The empty word belong to B, i.e. $\varepsilon \in B$.
Inductive step. If $w \in B$ then $w 0 \in B$ and $w 1 \in B$.
The basic step lists "small" elements of the set. The inductive step tells how to get "more complex" elements from those that were already formed.
1.4.15 Let A be a set of binary words defined inductively by:

- $0 \in A$ and $1 \in A$.
- If $w \in A$ then $0 w 0 \in A$ and $1 w 1 \in A$.

Prove that A consists of all binary words of odd length which are palindromes (i.e. words w that are the same as its reverse).

Solution. Denote by A^{\prime} the set of all binary words that are palindromes. We have to show that $A=A^{\prime}$.

First, let us prove that $A \subseteq A^{\prime}$, in other words, that every word $w \in A$ is a palindrome of odd length. We proceed as follows:

1. 0 and 1 are palindromes of odd length.
2. If w is a palindrome of odd length then so are $0 w 0$ and $1 w 1$.

Since all elements from A were constructed using finite number of steps 1. and 2., we proved that every element of A belongs to A^{\prime}.

Now, let us prove that $A^{\prime} \subseteq A$; in other words, that every odd palindrome can be obtained by the procedure above. We shall proceed by induction on the length $2 n-1$ of w.
Basic step. For $n=1$ there are only two palindromes of length 1 ; indeed, they are 0 and 1 . Both belong to A.
Inductive step. Assume that any palindrome of length $2 n-1$ can be formed by tho rules 1) and 2) (i.e. they belong to A). Take any palindrome w of length $2 n+1$, and denote by a its first bit. Then a is either 0 or 1 . Since w is a palindrome, the first bit must be the same as the last one. Hence, $w=a u a$ for a palindrome u of length $2 n-1$. Therefore, $u \in A$, which proves that $a u a \in A$ as well.

Hence, by the mathematical induction we get that $A=A^{\prime}$; in other words, A consists of all palindromes of odd length.

The first part of the proof is called structural induction.

