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1.4.5 Principle of mathematical induction – continuation

Example. Derive a formula for
∑n

i=0 i2 and prove it.

Solution. Our guess will be that it as some polynomial of degree 3. (It is a generalization

of the fact the
∑n

i=0 i = n(n+1)
2 .) A general polynomial of degree 3 is an3 + bn2 + cn + d.

If
∑n

i=0 i2 = an3 + bn2 + cn+ d is a correct formula then it has to be valid for any n ≥ 0.
If we would like to prove the formula using mathematical induction we should have to show
that the unknown coefficients a, b, c, d satisfy the basic and the inductive step.

Let us first examine the basic step:
For n = 0, it must hold

0 =

0∑
i=0

i2 = a · 03 + b · 02 + c · 0 + d = d.

Hence d = 0 and if the formula will be correct then
∑n

i=0 i2 = an3 + bn2 + cn.

Now, let us deal with the inductive step. Assume that
∑n

i=0 i2 = an3 + bn2 + cn. We

have to show that
∑n+1

i=0 i2 = a(n + 1)3 + b(n + 1)2 + c(n + 1). We know that

n+1∑
i=0

i2 =

n∑
i=0

i2 + (n + 1)2.

Hence the coefficients a, b, c have to satisfy

a(n + 1)3 + b(n + 1)2 + c(n + 1) = an3 + bn2 + cn + (n + 1)2.

Two polynomials are equal if, and only if the corresponding coefficients are equal. We get
the following system of linear equations

3a = 1
3a + 2b = 2
a + b + c = 1

The only solution of the system above is a = 1
3 , b = 1

2 , and c = 1
6 . Therefore,

n∑
i=0

i2 =
1

3
n3 +

1

2
n2 +

1

6
n =

n(2n + 1)(n + 1)

6
.

1.4.6 Theorem. The principle of mathematical induction follows from the well-ordering
principle.

Proof. Assume that for a property V (n) there is n0 ∈ N such that the following conditions
hold:

1. V (n0) is true.
2. If V (n) is true for a natural number n ≥ n0 then so is V (n + 1).

Denote by M the set of all natural numbers n ≥ n0 for which V (n) is not true. Assume that
M has the smallest element, say n1. Clearly, n1 6= n0 because V (n0) is true. Hence, n1 > n0.
Take n2 = n1−1; then n2 ≥ n0. Since n1 is the smallest element of M , n2 6∈M , which means
that V (n2) is true. But then by the condition 2), V (n1) it true as well, indeed, n1 = n2 + 1.
A contradiction.

Therefore, M does not have smallest element which, by well-ordering principle, means
that M = ∅. We have shown that V (n) is true for all natural numbers n ≥ n0, which is what
principle of mathematical induction claims.
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1.4.7 Remark. The principle of weak mathematical induction is not always sufficient when
e.g. proving some facts. Here, we introduce a new version of mathematical induction, called
a strong mathematical induction, which is equivalent to the weak one but helps to solve
situations where the weak one does not suffice.

1.4.8 Principle of Strong Mathematical Induction. Given a property V (n) that may
be true or false for n ∈ N. Let n0 be a natural number. Assume that the following conditions
hold:

1. V (n0) holds.
2. If V (k) holds for every natural number k, n0 ≤ k < n, then so does V (n).

Then V (n) holds for all natural numbers n ≥ n0.

Notice, that the principle of strong mathematical induction differs from the weak one in
the second condition. In the weak induction we assume that V (n− 1) is true and from it we
deduce that V (n) is true as well. In the strong version, the induction assumption is that V (k)
holds for every k, n0 ≤ k < n. From this assumption we show that V (n) is true as well.

1.4.9 Example. Let us prove by strong mathematical induction the following statement:
Every natural number n ≥ 2 is a product of one or more primes.

Recall that: A prime number is a natural number p > 1 such that if p = r · s for natural
numbers r, s then either r = 1 or s = 1. A natural number n > 1 which is not a prime is
called a composite number.

Solution: We proceed by strong mathematical induction.

Basic step. The number n = 2 is a prime number. So the statement is true for n = 2.

Inductive step. Assume that all natural numbers k such that 2 ≤ k < n are products of one
or more primes. Consider the number n. Then either n is a prime number of n is a composite
number. If n is a prime then it is a product of one prime number.

Assume that n is a composite number. Then n = r · s where 1 < r, s < n. From the
induction assumption, we know that r and s are products of one or more primes, hence n is
a product of primes as well.

1.4.10 Theorem. The weak and the strong mathematical induction are equivalent.

Justification. It is not difficult to see that whenever a property V (n) satisfies 2w) and V (n)
is true, then V (k) is true for every k, n0 ≤ k ≤ n. Indeed, assume that there is k, n0 ≤ k ≤ n.
Take the smallest one and denote it by k0. Then k0 > n0, since V (n0) is true by the condition
1). Consider k0− 1 ≥ n0; because k0 is the smallest one for which V (k) is not true, V (k0− 1)
is true. But in this case, the condition V (k0) must be true, this follows from the condition
2w). A contradiction.

1.4.11 Theorem. The well-ordering principle follows from the strong version of mathe-
matical induction.

Proof. Assume that the strong version of mathematical induction holds. Let M be a set of
natural numbers that does not have the smallest element. We shall show that M is empty.

Consider the property V (n) defined by

V (n) is true if, and only if n 6∈M .

The property V (n) satisfies 1) for n0 = 0, and 2s). Indeed:

1. Basic step. V (0) is true. Indeed, if 0 ∈ M then 0 is the smallest element of M , which
contradicts to the fact that M does not have the smallest element.
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2s. Inductive step. Assume that for all k ≤ n it holds k 6∈ M (V (k) is true). Then n + 1
cannot be in M , indeed it would have been the smallest element of M . Hence, V (n + 1) is
true.

By strong mathematical induction, V (n) is true for all n ∈ N, which means that no natural
number belongs to M ; therefore M is empty.

1.4.12 Tiling Problem. A right tromino is a figure consisting in three squares of the
same size arranged to a right angle. A deficient board of 22n squares is a square with one
square missing.

Is it possible to cover a deficient boar by trominos for every n ≥ 1.

The fact that the answer is yes, can be proved by induction.

Basic step. For n = 1 a deficient board of 22 squares is just one tromino.

Inductive step. Assume that any deficient board of 22n squares can be covered by trominos.
Consider a deficient board of 22(n+1) squares. Divide the board into 4 boards of 22n squares,
one of which is a deficient board. Place one tromino in the center so that now all 4 boards
are deficient. Since now all the 4 boards are deficient, we can use the induction assumption
to cover it by trominos.

1.4.13 Hanoi Towers. Three pegs A,B,C are given together with n discs of different
size. All discs are placed to peg A. The task is to move all n discs to peg B or C. The rule
for moving a disc is the following: A disc can be placed only on a bigger one.

Compute the smallest number of moves that are needed to move n discs from peg A to
peg B.

To move the biggest disc (which is the bottom one on peg A) one must first move all n−1
smaller discs to one of the pegs B or C, then the biggest one must be moved to an empty
peg. Finally, all the n− 1 smaller ones must move on the biggest one.

Hence the following formula for the number of moves T (n) holds:

T (n) = 2 · T (n− 1) + 1, T (1) = 1.

It is not difficult to guess and afterwards prove that

T (n)−
n∑

i=0

2n−1 = 2n − 1.

1.4.14 Structural Induction. Mathematical induction is used not only to prove some
statement but also to define a set. Let us start with an example.

Example. The set B of all binary words can be defined as follows:

Basic step. The empty word belong to B, i.e. ε ∈ B.

Inductive step. If w ∈ B then w0 ∈ B and w1 ∈ B.
The basic step lists ”small” elements of the set. The inductive step tells how to get ”more

complex” elements from those that were already formed.

1.4.15 Let A be a set of binary words defined inductively by:

• 0 ∈ A and 1 ∈ A.

• If w ∈ A then 0w0 ∈ A and 1w1 ∈ A.

Prove that A consists of all binary words of odd length which are palindromes (i.e. words
w that are the same as its reverse).

Marie Demlova: Discrete Mathematics Lect. 4: 10/3/2022



[220309-1311 ] 17

Solution. Denote by A′ the set of all binary words that are palindromes. We have to show
that A = A′.

First, let us prove that A ⊆ A′, in other words, that every word w ∈ A is a palindrome of
odd length. We proceed as follows:

1. 0 and 1 are palindromes of odd length.

2. If w is a palindrome of odd length then so are 0w0 and 1w1.

Since all elements from A were constructed using finite number of steps 1. and 2., we
proved that every element of A belongs to A′.

Now, let us prove that A′ ⊆ A; in other words, that every odd palindrome can be obtained
by the procedure above. We shall proceed by induction on the length 2n− 1 of w.

Basic step. For n = 1 there are only two palindromes of length 1; indeed, they are 0 and 1.
Both belong to A.

Inductive step. Assume that any palindrome of length 2n − 1 can be formed by tho rules
1) and 2) (i.e. they belong to A). Take any palindrome w of length 2n + 1, and denote by a
its first bit. Then a is either 0 or 1. Since w is a palindrome, the first bit must be the same
as the last one. Hence, w = aua for a palindrome u of length 2n−1. Therefore, u ∈ A, which
proves that aua ∈ A as well.

Hence, by the mathematical induction we get that A = A′; in other words, A consists of
all palindromes of odd length.

The first part of the proof is called structural induction.
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