Chapter 2

Integers

2.1 Integers and Their Properties

Integers are well known numbers. They play a crucial role in mathematics, primarily in the discrete mathematics and its applications. We will use them in the sequel to introduce "new numbers", the residual classes of integers modulo a positive integer n.

First, let us recall some well known facts about division of integers. They are: integer division with remainder, a common divisor, and the greatest common divisor. We present the Euclid's Algorithm for finding the greatest common divisor and its applications, namely for solving Diophantic equations — equations in which only integer solutions are sought.

2.1.1 The Division Theorem. Let a, b, b > 0, be two integers. Then there exist unique integers q, r such that

$$a = q b + r, \quad 0 \le r < b.$$

We will prove later only the uniqueness part of the theorem, the existence of q and r follows from the well known way how to divide two integers.

2.1.2 Remark. 1. The number q is called the *quotient*, and r the *remainder* when we divide a by b.

2. We formulated the division theorem 2.1.1 not only for natural numbers a and b, but also for a negative integer a. In that case, we have to be a little more careful. Assume that a is negative. Divide the absolute value |a| by b. Then |a| = q'b + r' for $0 \le r' < b$, $q' \le 0$, and a = -q'b - r'. If r' = 0 then a = -q'b, and we have q = -q', r = 0. Assume 0 < r' < b, then a = -q'b - r' = -(q'+1)b + (b-r'). Moreover, 0 < b - r' < b, and hence q = -(q'+1) and r = b - r'.

We show the procedure on the following example: Let a = -7, b = 3. We have $7 = 2 \cdot 3 + 1$, hence $-7 = -2 \cdot 3 - 1 = -3 \cdot 3 + (3 - 1)$. Therefore, q = -3 and r = 2.

Let us prove the uniqueness of the quotient and the remainder.

2.1.3 Justification of Uniqueness. Assume that there exist two pairs q and r from 2.1.1, say q_1 , r_1 and q_2 , r_2 , where $0 \le r_1, r_2 < b$. We have

$$a = q_1 b + r_1$$
, and $a = q_2 b + r_2$.

Then

$$q_1 b + r_1 = q_2 b + r_2$$
, i.e. $(q_1 - q_2) b = r_2 - r_1$.

Because $|r_2 - r_1| < b$ and it is a multiple of b, the number $q_1 - q_2$ must be 0 (indeed, otherwise $|(q_1 - q_2)b| \ge b)$. And this means that $q_1 = q_2$ and $r_1 = r_2$. We have shown that the quotient and the remainder are unique.

2.1.4 Divisibility. Let us recall other well known notions.

Definition. Given two integers a, b. We say that b divides a if a = k b for some integer k. We also say that a is a *multiple* of b. This fact is denoted by b | a.

A positive integer p, p > 1, is said to be a *prime* if it satisfies:

 $a \mid p, a \ge 0$, implies a = 1 or a = p.

A number n > 1 is *composite* if it is not a prime, or equivalently, if there exist $r, s \in \mathbb{Z}$ such that $n = r \cdot s$ and r > 1 and s > 1.

Notice, that 0 divides 0; indeed, e.g. $0 = 1 \cdot 0$. If $b \neq 0$ then $b \mid a$ if and only if the remainder when dividing a by b equals 0. Also, note that 1 has a special role, it is (by definition) neither a composite number nor a prime.

2.1.5 A Common Divisor and the Greatest Common Divisor. Let us recall the definition of a common divisor and the greatest common divisor.

Definition. Let a and b be two integers. A common divisor of a and b is any integer e for which $e \mid a$ and $e \mid b$.

The greatest common divisor of a, b is the integer c such that

1. $c \ge 0$

- 2. c is a common divisor of a and b, i.e. $c \mid a$ and $c \mid b$,
- 3. and if e is any common divisor of a and b then $e \mid c$.

The greatest common divisor of a and b is denoted by gcd(a, b). Integers a and b are called relatively prime (or coprime) if gcd(a, b) = 1.

2.1.6 Remarks.

- 1. For every natural number a we have $a = \gcd(a, 0)$.
- 2. If for natural numbers a, b we have $a \mid b$ then gcd(a, b) = a.
- 3. For every integers a, b it holds that gcd(a, b) is always non-negative and gcd(a, b) = gcd(-a, b) = gcd(a, -b) = gcd(-a, -b).

2.1.7 You know from school mathematics that the greatest common divisor of a and b can be found using a factorization of a and b into products of primes. Unfortunately, finding such factorization for big a (or b) is a very difficult task. (There is not known a tractable algorithm for finding it.) The following fast algorithm, due to Euclid, is based on the division theorem.

2.1.8 Euclid's Algorithm.

Input: Positive natural numbers a and b**Output**: c = gcd(a, b).

- 1. (Initialization.) u := a, t := b;
- 2. (Divide u by t.)

repeat $\begin{array}{l} \text{do } u = q \cdot t + r; \\ u := t, \, t := r. \end{array}$ until $t = 0. \end{array}$

3. (The greatest common divisor) return c := u.

2.1.9 Correctness of the Euclid's Algorithm. Notice that the above algorithm will always terminate; indeed, the number t in the next execution of the step 2 is an integer that is always strictly smaller than the previous one. So after a finite number of executions of step 2, we get t = 0 and the algorithm terminates.

The fact that the algorithm returns gcd(a, b) is proved in the following proposition.

Proposition. The pairs of numbers u, t and t, r from the Euclid's algorithm 2.1.8 have the same common divisors. Hence gcd(u, t) = gcd(t, r) = gcd(a, b).

Justification. Since $r = u - q \cdot t$ for an integer q, any common divisor of u and t is also a divisor of t, r. Indeed, if $u = d \cdot u'$ and $t = d \cdot t'$, then also $r = d \cdot u' - q \cdot d \cdot t' = d(u' - qt')$.

On the other hand, $u = q \cdot t + r$ so any common divisor of t, r is a divisor of u as well. Indeed, if $t = d \cdot t'$ and $r = d \cdot r'$, then also $u = q \cdot d \cdot t' + d \cdot r' = d(qt' + r')$.

2.1.10 Euclid's Algorithm can be extended in such a way that it finds not only gcd(a, b) but also **integers** x, y that solve the following equation

$$a x + b y = \gcd(a, b).$$

Such equations (considered as equations over integers) will play a crucial role when investigating properties of residual classes modulo n.

2.1.11 Bezout's Theorem. Let a and b be two natural numbers. Denote c = gcd(a, b). Then there exist integers x, y such that

$$a x + b y = c.$$

The proof of the Bezout's theorem will be given by the extended Euclid's algorithm, because the extended Euclid's algorithm not only proves the existence of integers x and y, but it finds them together with the greatest common divisor of a and b.

2.1.12 Extended Euclid's Algorithm.

Input: natural numbers a and b.

Output: c = gcd(a, b) together with $x, y \in \mathbb{Z}$ for which a x + b y = c.

```
1. (Initialization.)

u := a, x_u := 1, y_u := 0, t := b, x_t := 0, y_t := 1;

2. (Division.)

repeat

do u = q \cdot t + r, x_r := x_u - q x_t, y_r := y_u - q y_t;

u := t, x_u := x_t, y_u := y_t

t := r, x_t := x_r, y_t := y_r.

until t = 0

3. (Greatest common divisor and x, y)

return c := u, x := x_u, y := y_u.
```

Justification of the above algorithm is similar to 2.1.8.

- 1. $a = 1 \cdot a + 0 \cdot b$ and $b = 0 \cdot a + 1 \cdot b$. So, the step 1 correctly sets x_u, y_u and x_t, y_t .
- 2. Assume that $u = a x_u + b y_u$ and $t = a x_t + b y_t$. Then

$$r = u - qt = ax_u + by_u - q(ax_t + by_t) = a(x_u - qx_t) + b(y_u - qy_t).$$

Hence, it is clear that the numbers x_r and y_r are correctly defined.

The Bezout's theorem has couple of important corollaries; some of them you have used in school mathematics without justification.

2.1.13 Corollary.

- 1. Let a and b be two relatively prime numbers. If a divides a product $b \cdot c$ then a divides
- 2. If a prime number p divides a product $a \cdot b$ then it divides at least one of the numbers a, b.

Justification. We prove the first part of the corollary; the second one is an easy consequence of the first one.

Assume that numbers a and b are relatively prime. By the Bezout's theorem there exist integers x, y such that

$$1 = a x + b y.$$

Multiplying the equation by c we get

$$c = a \, c \, x + b \, c \, y.$$

Number a divides ac and it also divides the product bc, hence a divides c.

2.1.14 Prime Factorization. Let us recall another known fact – a factorization of a natural number different from 1 into a product of primes.

Theorem. Every natural number n, n > 1, factors into a product of primes, i.e.

$$n = p_1^{i_1} \cdot p_2^{i_2} \cdot \ldots \cdot p_k^{i_k},$$

where p_1, \ldots, p_k are distinct primes, and i_1, \ldots, i_k positive natural numbers.

If moreover $p_1 < p_2 < \ldots < p_k$ then the factorization is unique.

Justification. The existence of a prime factorization is shown using mathematical induction (more precisely, the principle of strong mathematical induction).

To justify the uniqueness one can use the above corollary. Assume that

 $p_1^{i_1} \cdot p_2^{i_2} \cdot \ldots \cdot p_k^{i_k} = q_1^{j_1} \cdot q_2^{j_2} \cdot \ldots \cdot q_m^{j_m}$

and $p_1 < p_2 < \ldots < p_k$, $q_1 < q_2 < \ldots < q_m$ then p_1 divides $q_1^{j_1} \cdot q_2^{j_2} \cdot \ldots \cdot q_m^{j_m}$ so $p_1 = q_1$. (Indeed, a prime number p divides a prime number q then p = q. Hence, p_1 must be equal to the smallest prime among q_i and it is q_1 .)

If we divide the equality by p_1 and repeat the argument we get that $i_1 = j_1$. Analogously (after dividing by $p_1^{i_1}$) we get $p_2 = q_2$, $i_2 = j_2$, etc. k = m and $p_k = q_k$, $i_k = j_k$.

2.1.15There is a Countably Many Primes. Using the prime factorization theorem one can easily prove that there is an infinite number of primes – see the following theorem. Since every prime is an integer, it means that there is countably many of them.

Theorem. There are infinitely (countably) many primes.

Justification. Assume that there were only finitely many primes, say p_1, p_2, \ldots, p_N were the only primes. Then the number $n = p_1 \cdot p_2 \cdot \ldots \cdot p_N + 1$ is a product of primes; namely is divisible by some prime p. But p cannot be among p_1, \ldots, p_N , since n is not divisible by any p_i – a contradiction.

2.1.16 Diophantic Equations. The Bezout's theorem 2.1.11 helps us to solve other linear equations where we are looking for integer solutions – so called *Diophantic equations*.

Definition. Given three integers a, b, c. Find all integers $x, y \in \mathbb{Z}$ which are solutions of the following equation

$$ax + by = c. (2.1)$$

2.1.17 When a Diophantic Equation Has Got a Solution. The following proposition characterizes all Diophantic equations that have got at least one solution.

Proposition. Equation 2.1 has got at least one solution if and only if c is divisible by the greatest common divisor of a and b.

Justification. Denote d = gcd(a, b). If c is a multiple of d, say c = k d, then it suffices to find integers x', y' from the Bezout's Theorem for which

$$d = a x' + b y'$$
 and $c = k d = a k x' + b k y'$.

Now x := k x' and y := k y' is one solution of the equation 2.1.