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Chapter 2

Integers

2.1 Integers and Their Properties

Integers are well known numbers. They play a crucial role in mathematics, primarily in the
discrete mathematics and its applications. We will use them in the sequel to introduce ”new
numbers”, the residual classes of integers modulo a positive integer n.

First, let us recall some well known facts about division of integers. They are: integer
division with remainder, a common divisor, and the greatest common divisor. We present
the Euclid’s Algorithm for finding the greatest common divisor and its applications, namely
for solving Diophantic equations — equations in which only integer solutions are sought.

2.1.1 The Division Theorem. Let a, b, b > 0, be two integers. Then there exist unique
integers q, r such that

a = q b + r, 0 ≤ r < b.

�
We will prove later only the uniqueness part of the theorem, the existence of q and r

follows from the well known way how to divide two integers.

2.1.2 Remark. 1. The number q is called the quotient , and r the remainder when we
divide a by b.

2. We formulated the division theorem 2.1.1 not only for natural numbers a and b, but
also for a negative integer a. In that case, we have to be a little more careful. Assume that
a is negative. Divide the absolute value |a| by b. Then |a| = q′b + r′ for 0 ≤ r′ < b, q′ ≤ 0,
and a = −q′b− r′. If r′ = 0 then a = −q′b, and we have q = −q′, r = 0. Assume 0 < r′ < b,
then a = −q′b− r′ = −(q′ + 1)b+ (b− r′). Moreover, 0 < b− r′ < b, and hence q = −(q′ + 1)
and r = b− r′.

We show the procedure on the following example: Let a = −7, b = 3. We have 7 = 2·3+1,
hence −7 = −2 · 3− 1 = −3 · 3 + (3− 1). Therefore, q = −3 and r = 2.

Let us prove the uniqueness of the quotient and the remainder.

2.1.3 Justification of Uniqueness. Assume that there exist two pairs q and r from 2.1.1,
say q1, r1 and q2, r2, where 0 ≤ r1, r2 < b. We have

a = q1 b + r1, and a = q2 b + r2.

Then
q1 b + r1 = q2 b + r2, i.e. (q1 − q2) b = r2 − r1.

Because |r2−r1| < b and it is a multiple of b, the number q1−q2 must be 0 (indeed, otherwise
|(q1−q2)b| ≥ b) . And this means that q1 = q2 and r1 = r2. We have shown that the quotient
and the remainder are unique. �
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2.1.4 Divisibility. Let us recall other well known notions.

Definition. Given two integers a, b. We say that b divides a if a = k b for some integer k.
We also say that a is a multiple of b. This fact is denoted by b | a.

A positive integer p, p > 1, is said to be a prime if it satisfies:

a | p, a ≥ 0, implies a = 1 or a = p.

A number n > 1 is composite if it is not a prime, or equivalently, if there exist r, s ∈ Z such
that n = r · s and r > 1 and s > 1. �

Notice, that 0 divides 0; indeed, e.g. 0 = 1·0. If b 6= 0 then b | a if and only if the remainder
when dividing a by b equals 0. Also, note that 1 has a special role, it is (by definition) neither
a composite number nor a prime.

2.1.5 A Common Divisor and the Greatest Common Divisor. Let us recall the
definition of a common divisor and the greatest common divisor.

Definition. Let a and b be two integers. A common divisor of a and b is any integer e for
which e | a and e | b.

The greatest common divisor of a, b is the integer c such that

1. c ≥ 0
2. c is a common divisor of a and b, i.e. c | a and c | b,
3. and if e is any common divisor of a and b then e | c.

The greatest common divisor of a and b is denoted by gcd(a, b). Integers a and b are called
relatively prime (or coprime) if gcd(a, b) = 1. �

2.1.6 Remarks.

1. For every natural number a we have a = gcd(a, 0).
2. If for natural numbers a, b we have a | b then gcd(a, b) = a.
3. For every integers a, b it holds that gcd(a, b) is always non-negative and gcd(a, b) =

gcd(−a, b) = gcd(a,−b) = gcd(−a,−b).

2.1.7 You know from school mathematics that the greatest common divisor of a and b
can be found using a factorization of a and b into products of primes. Unfortunately, finding
such factorization for big a (or b) is a very difficult task. (There is not known a tractable
algorithm for finding it.) The following fast algorithm, due to Euclid, is based on the division
theorem.

2.1.8 Euclid’s Algorithm.

Input: Positive natural numbers a and b
Output: c = gcd(a, b).

1. (Initialization.)
u := a, t := b;

2. (Divide u by t.)
repeat

do u = q · t + r;
u := t, t := r.

until t = 0.
3. (The greatest common divisor)

return c := u.
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2.1.9 Correctness of the Euclid’s Algorithm. Notice that the above algorithm will
always terminate; indeed, the number t in the next execution of the step 2 is an integer that
is always strictly smaller than the previous one. So after a finite number of executions of step
2, we get t = 0 and the algorithm terminates.

The fact that the algorithm returns gcd(a, b) is proved in the following proposition.

Proposition. The pairs of numbers u, t and t, r from the Euclid’s algorithm 2.1.8 have the
same common divisors. Hence gcd(u, t) = gcd(t, r) = gcd(a, b). �

Justification. Since r = u − q · t for an integer q, any common divisor of u and t is also a
divisor of t, r. Indeed, if u = d · u′ and t = d · t′, then also r = d · u′ − q · d · t′ = d(u′ − qt′).

On the other hand, u = q · t + r so any common divisor of t, r is a divisor of u as well.
Indeed, if t = d · t′ and r = d · r′, then also u = q · d · t′ + d · r′ = d(qt′ + r′). �

2.1.10 Euclid’s Algorithm can be extended in such a way that it finds not only gcd(a, b)
but also integers x, y that solve the following equation

a x + b y = gcd(a, b).

Such equations (considered as equations over integers) will play a crucial role when investi-
gating properties of residual classes modulo n.

2.1.11 Bezout’s Theorem. Let a and b be two natural numbers. Denote c = gcd(a, b).
Then there exist integers x, y such that

a x + b y = c.

�
The proof of the Bezout’s theorem will be given by the extended Euclid’s algorithm,

because the extended Euclid’s algorithm not only proves the existence of integers x and y,
but it finds them together with the greatest common divisor of a and b.

2.1.12 Extended Euclid’s Algorithm.

Input: natural numbers a and b.

Output: c = gcd(a, b) together with x, y ∈ Z for which a x + b y = c.

1. (Initialization.)
u := a, xu := 1, yu := 0, t := b, xt := 0, yt := 1;

2. (Division.)
repeat

do u = q · t + r, xr := xu − q xt, yr := yu − q yt;
u := t, xu := xt, yu := yt
t := r, xt := xr, yt := yr.

until t = 0
3. (Greatest common divisor and x, y)

return c := u, x := xu, y := yu.

Justification of the above algorithm is similar to 2.1.8.

1. a = 1 · a + 0 · b and b = 0 · a + 1 · b. So, the step 1 correctly sets xu, yu and xt, yt.
2. Assume that u = a xu + b yu and t = a xt + b yt. Then

r = u− q t = a xu + b yu − q (a xt + b yt) = a (xu − q xt) + b (yu − q yt).

Hence, it is clear that the numbers xr and yr are correctly defined.

�
The Bezout’s theorem has couple of important corollaries; some of them you have used in

school mathematics without justification.
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2.1.13 Corollary.

1. Let a and b be two relatively prime numbers. If a divides a product b · c then a divides
c.

2. If a prime number p divides a product a · b then it divides at least one of the numbers
a, b.

�

Justification. We prove the first part of the corollary; the second one is an easy consequence
of the first one.

Assume that numbers a and b are relatively prime. By the Bezout’s theorem there exist
integers x, y such that

1 = a x + b y.

Multiplying the equation by c we get

c = a c x + b c y.

Number a divides a c and it also divides the product b c, hence a divides c. �

2.1.14 Prime Factorization. Let us recall another known fact – a factorization of a
natural number different from 1 into a product of primes.

Theorem. Every natural number n, n > 1, factors into a product of primes, i.e.

n = pi11 · p
i2
2 · . . . · p

ik
k ,

where p1, . . . , pk are distinct primes, and i1, . . . , ik positive natural numbers.

If moreover p1 < p2 < . . . < pk then the factorization is unique. �

Justification. The existence of a prime factorization is shown using mathematical induction
(more precisely, the principle of strong mathematical induction).

To justify the uniqueness one can use the above corollary. Assume that

pi11 · p
i2
2 · . . . · p

ik
k = qj11 · q

j2
2 · . . . · qjmm

and p1 < p2 < . . . < pk, q1 < q2 < . . . < qm then p1 divides qj11 · q
j2
2 · . . . · qjmm so p1 = q1.

(Indeed, a prime number p divides a prime number q then p = q. Hence, p1 must be equal to
the smallest prime among qj and it is q1.)

If we divide the equality by p1 and repeat the argument we get that i1 = j1. Analogously
(after dividing by pi11 ) we get p2 = q2, i2 = j2, etc. k = m and pk = qk, ik = jk. �

2.1.15 There is a Countably Many Primes. Using the prime factorization theorem
one can easily prove that there is an infinite number of primes – see the following theorem.
Since every prime is an integer, it means that there is countably many of them.

Theorem. There are infinitely (countably) many primes. �

Justification. Assume that there were only finitely many primes, say p1, p2, . . . , pN were the
only primes. Then the number n = p1 · p2 · . . . · pN + 1 is a product of primes; namely is
divisible by some prime p. But p cannot be among p1, . . . , pN , since n is not divisible by any
pi – a contradiction. �

2.1.16 Diophantic Equations. The Bezout’s theorem 2.1.11 helps us to solve other linear
equations where we are looking for integer solutions – so called Diophantic equations.

Definition. Given three integers a, b, c. Find all integers x, y ∈ Z which are solutions of the
following equation

ax + by = c. (2.1)

�
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2.1.17 When a Diophantic Equation Has Got a Solution. The following proposition
characterizes all Diophantic equations that have got at least one solution.

Proposition. Equation 2.1 has got at least one solution if and only if c is divisible by the
greatest common divisor of a and b. �

Justification. Denote d = gcd(a, b). If c is a multiple of d, say c = k d, then it suffices to find
integers x′, y′ from the Bezout’s Theorem for which

d = a x′ + b y′ and c = k d = a k x′ + b k y′.

Now x := k x′ and y := k y′ is one solution of the equation 2.1.

Marie Demlova: Discrete Mathematics Lect. 5: 17/3/2022


	Sets and Relations
	Sets
	Cardinality of Sets
	Binary relations
	Mathematical Induction.

	Integers
	Integers and Their Properties


