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2.2 Congruence relation modulo n

We have introduced the extended Euclid’s algorithm which helped us to solve Diophantic
equations; linear equations with two unknowns where we look only for integer solutions. The
material of the last lecture will be used for introduction new “numbers”, residue classes, and
operations with them.

2.2.1 The Relation Modulo n. First of all we introduce an equivalence relation modulo n
for a natural number n > 1. You have already come across it; indeed, consider the imaginary
unit i. We have

i2 = −1, i3 = −i, i4 = 1, and i5 = i.

Therefore, it is easy to calculate powers of the imaginary unit i; indeed for example
i651 = i4·162+3 = 1162 · i3 = −i. More generally, to calculate ik it suffices to know the
remainder r when k is divided by 4, and then we have ik = ir.

Definition. Given two integers a, b and a natural number n > 1. We say that a is congruent
to b modulo n and write a ≡ b (modn) if a− b is divisible by n. �

2.2.2 Equivalent Characterizations of Modulo n. We could introduce the relation
modulo n in other two ways.

Proposition. Let a and b be two integers. Then the following is equivalent:

1. a ≡ b (modn),
2. a = b + k n for some integer k,
3. a and b have the same remainders when divided by n.

�

Justification. It is clear that conditions 1. and 2. are equivalent; indeed the fact that a − b
is divisible by n means that a − b = k n for some integer k ∈ Z; and this is the same as
a = b + k n.

We show that a ≡ b (modn) if and only if a and b have the same remainder when divided
by n. Assume that a = q1 n + r1, b = q2 n + r2 and 0 ≤ r1, r2 < n.

If r1 = r2, then a− b = (q1 − q2)n and a ≡ b (modn) holds.

If r1 6= r2, then from the uniqueness of the division theorem, a − b is not divisible by n,
so a ≡ b (modn) does not hold. �

2.2.3 The Relation Modulo n is an Equivalence Relation on Z.

Proposition. Let a, b, and c be integers. Then

1. a ≡ a (modn) (modulo n is reflexive);
2. if a ≡ b (modn), then also b ≡ a (modn) (modulo n is symmetric);
3. if a ≡ b (modn) and b ≡ c (modn), then a ≡ c (modn) (modulo n is transitive).

�
The justification is easy, especially if we use 2.2.2.

2.2.4 Properties of the Equivalence Modulo n. The equivalence modulo n also
“maintain” operations addition and multiplication of integers. More precisely:

Proposition. Assume that for integers a, b, c, and d it holds that a ≡ b (modn) and
c ≡ d (modn). Then

(a + c) ≡ (b + d) (modn) a (a · c) ≡ (b · d) (modn).

�
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Justification. Assume that a ≡ b (modn) and c ≡ d (modn). Then a = b + kn and
c = d + rn for some k, r ∈ Z. Therefore, a + c = b + d + (k + r)n and a · c =
(b+ kn)(d+ rn) = bd+ (br + dk + krn)n. And this is equivalent to (a+ c) ≡ (b+ d) (modn)
and (a · c) ≡ (b · d) (modn). �

2.2.5 The 2.2.4 has two special cases. We state them as corollaries.

Corollary. Given two integers a, b such that a ≡ b (modn). Then

1. ra ≡ rb (modn) for every integer r;
2. ak ≡ bk (modn) for every natural number k.
3. Moreover, if ai ≡ bi (modn) for every i = 0, . . . , k, a r0, . . . , rk are arbitrary integers,

then
(r0 a0 + . . . + rk ak) ≡ (r0 b0 + . . . + rk bk) (modn).

�

Justification. 1. To prove the first part it suffices to use the above proposition 2.2.4 for the
pair r ≡ r (modn) a a ≡ b (modn).

2. From the above proposition we know that a2 ≡ b2 (modn) (we have used a ≡ b (modn)
and a ≡ b (modn)). Now, from a ≡ b (modn) and a2 ≡ b2 (modn) we get a3 ≡ b3 (modn),
a4 ≡ b4 (modn), etc.

To make the argument more accurate we can use mathematical induction over k. �

2.2.6 We can ask whether the first part of the corollary is still valid if we reverse the
implication. More precisely, if from ra ≡ rb modn it follows that a ≡ b modn. A simple
example shows that this is not the case. Indeed, we have 6 ≡ 10 mod 4, but 3 6≡ 5 mod 4.
The following proposition states what can be deduced form r a ≡ r b modn.

Proposition. Let r, a, b be integers and n a natural number n > 1 such that ra ≡ rb (modn).
Then

a ≡ b

(
mod

n

gcd(n, r)

)
. (2.2)

�

Justification. We know that ra− rb = kn for an integer k ∈ Z. Hence r(a− b) = kn. Denote
d = gcd(r, n). Then r = s · d, n = m · d, and the integers s and m are relatively prime.
Substituting into r(a− b) = kn and get

s d (a− b) = kmd, and s (a− b) = km.

Since the numbers s and m are relatively prime, and s divides the product km, the number
s must divide k. Therefore, s (a − b) = s j m and a − b = j m. We have shown that
a ≡ b (modm), in other words a ≡ b (mod n

gcd(n,r) ). �

2.2.7 Solving (a + x) ≡ b modn. Given integers a, b and a natural number n > 1. Find
all integers x for which

(a + x) ≡ b (modn). (2.3)

This problem has got always a solution which is any x ∈ Z for which x ≡ (b− a) (modn).

2.2.8 Solving (a · x) ≡ b modn. Given two integers a, b and a natural number n > 1.
Find all integers x for which

a x ≡ b (modn). (2.4)

Such x does not always exist. For example, there is no integer x for which 2x ≡ 3 (mod 4). We
will use Diophantic equations and their solutions to find a necessary and sufficient condition
on a, b, and n for which x ∈ Z satisfying the relation 2.4 exists.
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2.2.9 Proposition. Equation 2.4 has got a solution if and only if the number b is a multiple
of gcd(a, n).

In this case all integers x satisfying 2.4 are solutions of the following Diophantic equation

a x + n y = b.

�
Justification. We know that a x ≡ b (modn) means a x − b = k n for an integer k ∈ Z, and
this is equivalent to a x− k n = b. If we substitute y := −k, we get the Diophantic equation
2.2 which has a solution if and only if b is divisible by gcd(a, n). �

2.2.10 Let us mention another property that the equivalences modulo have got.

Proposition. Let n > 1, m > 1 be two relatively prime natural number. And let for some
a, b ∈ Z it holds that a ≡ b (modn) and a ≡ b (modm)

Then also a ≡ b (modnm). �

Justification. We know that a− b = kn and a− b = jm for some k, j ∈ Z. Hence kn = jm.
Since n and m are relatively prime and n divides the product jm, we know that n divides j.
So a− b = jm = r nm for some r ∈ Z. We have shown that a ≡ b (modnm). �

2.2.11 Remark. A stronger proposition can be proved than 2.2.10, namely: Assume that
a ≡ b (modn) and a ≡ b (modm). Let n1 = n

gcd(n,m) and m1 = m
gcd(n,m) . Then

a ≡ b (modn1m1).

The justification is analogous to 2.2.10; indeed, the equation kn = jm must be first divided
by gcd(n,m).

2.2.12 Small Fermat Theorem. We will end this part concerning the equivalence mod-
ulo n by the small Fermat theorem which is a basis of the RSA public-key cryptosystem. (In
literature, the Small Fermat Theorem is sometimes called Fermat Little Theorem.)

Theorem. Let p be a prime and a an integer relatively prime to p. Then

ap−1 ≡ 1 (mod p).

�

Justification. One of the proofs of the small Fermat theorem uses basic properties of groups
and we will give it later. There is also a proof which uses only elementary mathematics. In
fact, we will first show that for every integer a it holds that ap ≡ a mod p by mathematical
induction on a

1. Basic step: Let a = 0 or a = 1. Then ap = a, hence ap ≡ a (mod p).

2. Induction step: Assume that ap ≡ a (mod p), and calculate (a + 1)p − (a + 1). By the
binomial theorem we have

(a + 1)p − (a + 1) = ap +

(
p

1

)
ap−1 +

(
p

2

)
ap−2 + . . . +

(
p

p− 1

)
a + 1− (a + 1) =

= ap − a +

(
p

1

)
ap−1 + . . . +

(
p

p− 1

)
a.

We know by the induction hypothesis that ap − a is divisible by p. Hence, if we show that(
p
i

)
is divisible by p for every i, 0 < i < p, we will know that so is (a + 1)p − (a + 1). And

this means that (a + 1)p ≡ (a + 1) mod p.

We know that (
p

i

)
=

p!

i! (p− i)!
.
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Hence

i! (p− i)!

(
p

i

)
= p!.

Moreover, p divides neither i! (i < p) nor (p− i)! (0 < i). Hence, p must divide
(
p
i

)
.

Now, assume that a and p are relatively prime. We have ap − a = k p for some k ∈ Z.
Thus a (ap−1 − 1) = k p. Since a and p are relatively prime, a divides k and ap−1 − 1 = j p
which proves that ap−1 ≡ 1 (mod p). �

2.3 Residue Classes Modulo n

We know that the relation modulo n is an equivalence relation on the set Z, see 2.2.3. An
equivalence class of the equivalence modulo n containing a number i ∈ Z is called the residue
class containing i and is denoted by [i]n. We know that

[i]n = {j | j = i + kn for some k ∈ Z}. (2.5)

The name residue classes comes from the fact that an integer j belongs to [i]n if and only if
i and j have the same remainders when divided by n.

2.3.1 The Set Zn. There are n distinct residue classes modulo n; indeed, they are the
residue classes corresponding to the numbers (remainders) 0, 1, . . . , n−1. The set of all residue
classes is denoted by Zn, so

Zn = {[0]n, [1]n, . . . , [n− 1]n}.

2.3.2 Calculations in Zn. It is clear from the proposition 2.2.4 that the equivalence
modulo n is compatible with operations + and ·. Indeed, if i ≡ j (modn) and k ≡ l (modn)
then i + k ≡ j + l (modn) and i · k ≡ j · l (modn). These properties can be reformulate as
follows:

If we choose any a ∈ [i]n and any b ∈ [j]n then the number a + b belongs to [i + j]n,
and the number a · b belongs to [i · j]n. This allows us to define operations addition ⊕ and
multiplication � on the set Zn as follows:

[i]n ⊕ [j]n = [i + j]n, [i]n � [j]n = [i · j]n. (2.6)

2.3.3 Properties of the Operation ⊕.

• ⊕ is associative, i.e. for any three integers i, j, k we have:

([i]n ⊕ [j]n)⊕ [k]n = [i]n ⊕ ([j]n ⊕ [k]n).

• ⊕ is commutative, i.e. for any two integers i, j we have:

[i]n ⊕ [j]n = [j]n ⊕ [i]n.

• The class [0]n plays the role of “zero”, more precisely, for any integer i we have:

[0]n ⊕ [i]n = [i]n.

• We can ”subtract”, more precisely for any integer [i]n there exists class −[i]n such that

[i]n ⊕ (−[i]n) = [0]n.

�

Justification. Verification of the above properties is straightforward and it is left to the reader.
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2.3.4 Properties of the Operation �.

• � is associative, i.e for any three integers i, j, k we have:

([i]n � [j]n)� [k]n = [i]n � ([j]n � [k]n).

• � is commutative, i.e. for any two integers i, j we have:

[i]n � [j]n = [j]n � [i]n.

• The class [1]n plays the role of “identity”, More precisely, for any integer i we have:

[1]n � [i]n = [i]n.

�

Justification. Verification of the above properties is straightforward and it is left to the reader.

2.3.5 Remark. In the above properties there is no one which means something as “can-
cellation” or “division” for �. More precisely, we have not stated any general condition under
which for a given integer i there exists an integer j such that [i]n� [j]n = [1]n. The reason is
that no every equation of the form [i]n� [x]n = [1]n has a solution. The following proposition
characterizes i and n for which such x exists.

2.3.6 Proposition. Given two residue classes [i]n, [j]n, 0 ≤ i, j < n. Then there exists a
residue class [x]n which satisfies

[i]n � [x]n = [j]n (2.7)

if and only if the integer j is a multiple of the greatest common divisor d of i and n. In this
case, the equation 2.7 has d distinct solutions in Zn. �

Justification. [i]n � [x]n = [j]n can be rewritten as [i · x]n = [j]n and hence

i · x ≡ j modn.

And this leads to

i x− j = k n, so we have i x− k n = j.

And the last equation is in fact a Diophantic equation i x + n y = j which has a solution if
and only if j is a multiple of gcd(i, n).

From ?? we know that all integers x ∈ Z satisfying i x+ n y = j are of the form x0 + k n1

where x0 is one solution of the non-homogeneous equation, and i1 = i
d and n1 = n

d . It can
be shown that for xk = x0 + k n1 it holds that [xk]n are distinct elements of Zn for which 2.7
holds. �

2.3.7 A special case of 2.3.6 is the following:

Corollary. For a residue class [i]n there is a residue class [x]n such that

[i]n � [x]n = [1]n (2.8)

if and only if the numbers i and n are relatively prime. �

The class [x]n satisfying 2.8 is called the inverse of [i]n and we denote it [i]−1
n .

2.3.8 Distributivity Law for ⊕ and �. For any three integers i, j, k it holds that

[i]n � ([j]n ⊕ [k]n) = ([i]n � [j]n)⊕ ([i]n � [k]n).

Marie Demlova: Discrete Mathematics Lect. 6: 24/3/2022



28 [220323-1334 ]

2.3.9 Remark. If p is a prime number then the set Zp satisfies all the properties that
addition and multiplication of real numbers have got.

If n is a composite number (not a prime) then the situation is different. For example if
n = r · s, 0 < r < n and 0 < s < n, then [r]n � [s]n = [0]n even though the classes [r]n and
[s]n are non-zero. (It means that we cannot “divide” by such elements.)

2.3.10 Convention. Later on, when there is not fear of misunderstanding we will write
Zn = {0, 1, . . . , n− 1} instead of Zn = {[0]n, [1]n, . . . , [n− 1]n} and the operations ⊕, � will
be denoted by an “ordinary signs”, i.e. simply by + and ·.

Note that we can write that in Zn for every i, j ∈ Zn

i + j = k, where k is the remainder when i + j is divided by n;

i · j = l, where l is the remainder when i j is divided by n.
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