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3.1.10 An Invertible Element Can Be Canceled.

Proposition. Let (S, ◦, e) be a monoid, and let a ∈ S is its invertible element. Then

a ◦ b = a ◦ c, or b ◦ a = c ◦ a implies b = c.

�
Justification. Assume that a−1 exists and

a ◦ b = a ◦ c. (3.4)

Multiply 3.4 by a−1 form the left. We get

a−1 ◦ (a ◦ b) = a−1 ◦ (a ◦ c), which gives (a−1 ◦ a) ◦ b = (a−1 ◦ a) ◦ c and b = c.

Similarly for b ◦ a = c ◦ a. The only difference is that here we multiply by a−1 from the right.
(Notice the similarity with matrix operations.) �

3.1.11 Groups. In couple of examples above, every element was invertible; indeed, it holds
for (Z,+, 0), (R \ {0}, ·, 1), and (Zn,+, 0). Such monoids are of great importance and they
are called groups.

Definition. A monoid (S, ◦, e) in which every element is invertible is called a group. �

Examples of groups. The following monoids are groups:

1) The monoid (R,+, 0). Indeed, for every x ∈ R there exists −x for which x + (−x) =
0 = (−x) + x.

2) The monoid (Z,+, 0). Indeed, for each integer x there exists an integer −x for which
x+ (−x) = 0 = (−x) + x.

3) The monoid (R+, ·, 1), where R+ is the set of all positive real numbers. Indeed, for every
positive real number x there exists a positive real number 1

x for which x · 1x = 1 = 1
x ·x.

4) The monoid (Zn,⊕, [0]n). Indeed, for a class [i]n there exists a class [n− i]n for which
[i]n ⊕ [n− i]n = [0]n = [n− i]n ⊕ [i]n.

5) Let A be the set of all permutation of the set {1, 2, . . . , n}, and let ◦ be the composition
of permutations. Then (A, ◦) is a monoid with the neutral element the identity
permutation id. Moreover, for every permutation φ there exists its inverse permutation
φ−1 for which φ ◦ φ−1 = id = φ−1 ◦ φ.

Examples of monoids that are not groups.

1) The monoid (Z, ·, 1). Indeed, for example 2 is not invertible because there is no integer
k such that 2 · k = 1.

2) The monoid (Zn,�, [1]n). Indeed, the class [0]n is not invertible because for any [i]n we
have [0]n � [i]n = [0]n 6= [1]n.

3) Let B be the set of all mappings from the set {1, 2, . . . , n} into itself, where n > 1. Let
◦ be the composition of mappings. Then (B, ◦, id) is a monoid where id is the identity
mapping. Any mapping that is not one-to-one is not invertible.

3.1.12 Groups can be characterized as those semigroups (S, ◦) where every equation
a ◦ x = b and y ◦ a = b has a solution. In that case, the solution is unique. From this
it immediately follows that

1. If (S, ◦) is not a group, then there is an equation which does not have a solution.
2. Given a semigroup (S, ◦). If there exists an equation with two distinct solutions, then

(S, ◦) is not a group, and moreover there is an equation that does not have a solution.

The following two paragraphs prove it.

Marie Demlova: Discrete Mathematics Lect. 8: 7/4/2022



[220406-1409 ] 35

3.1.13 Proposition. Given a group (S, ◦) with its neutral element e. Then for every two
elements a, b ∈ S there exist unique x, y ∈ S such that

a ◦ x = b, y ◦ a = b.

�

Justification. Since (S, ◦, e) is a group and a ∈ S, there exists its inverse a−1. If we multiply
the equation a ◦ x = b by a−1 from the left we obtain

x = (a−1 ◦ a) ◦ x = a−1 ◦ (a ◦ x) = a−1 ◦ b.

Similarly we obtain y = b ◦ a−1 from the second equation; indeed, we multiply the second
equation by a−1 from the right and get the desired solution.

Let us show the uniqueness. Assume that a ◦ x1 = b and a ◦ x2 = b. Then a ◦ x1 = a ◦ x2.
Now, the proposition 3.1.10 completes the argument because it states that x1 = x2. Similarly
from y1 ◦ a = b and y2 ◦ a = b we get y1 = y2.

3.1.14 Theorem. A semigroup (S, ◦) is a group if and only if every equation of the form
a ◦ x = b and every equation of the form y ◦ a = b has at least one solution.

More precisely: A semigroup (S, ◦) is a group if and only if for every two elements a, b ∈ S
there exist x, y ∈ S such that a ◦ x = b and y ◦ a = b. �

Justification. First we show that if a semigroup (S, ◦) satisfies the above conditions then it
has got a neutral element.

Choose any a ∈ S. There exists ea ∈ S such that ea ◦ a = a; indeed, it is a solution of
y ◦ a = a. Now, take an arbitrary b ∈ S. We know that b = a ◦ x for some x ∈ S, hence

ea ◦ b = ea ◦ (a ◦ x) = (ea ◦ a) ◦ x = a ◦ x = b.

Similarly, it can be shown that the element fa for which a ◦ fa = a satisfies b ◦ fa = b for any
b ∈ S.

Therefore, from 3.1.4 we get that ea = fa is the neutral element of (S, ·).
To show that every element a ∈ S is invertible, it suffices to use the proposition from

3.1.7. Indeed, from the fact that there exist x, y ∈ S with a ◦ x = e and y ◦ a = e we know
that x = y, and x = a−1. So, a is invertible. Since a was an arbitrary element of S, (S, ◦, e)
is a group. �

3.1.15 Commutative Semigroups, Monoids, Groups. In many examples above (but
not in all) it does not matter whether we calculate a ◦ b or b ◦ a, we get the same results.

Definition. A semigroup (S, ◦) (monoid, group) is called commutative if it satisfies the
commutative law, i.e. for every two elements x, y ∈ S

x ◦ y = y ◦ x.

�

3.1.16 Subsemigroups. Given a semigroup (S, ◦) and a set T ⊆ S. It may happen (but
does not need to) that T together with the same operation ◦ is again a semigroup. In that
case, we will call (T, ◦) a subsemigroup of (S, ◦).
Definition. Given a semigroup (S, ◦). A subset T ⊆ S together with an operation ◦ forms
a subsemigroup of the semigroup (S, ◦), if for every two elements x, y ∈ T we have x ◦ y ∈ T .
(In this case (T, ◦) is also a semigroup.) �

Remark. Next, we will say less exactly “T is a subsemigroup” instead of “T forms a
subsemigroup”. It will be mainly in the situation where the operation is clear from the
context.

Examples of subsemigroups. The following are examples of subsemigroups:
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1) N together with addition forms a subsemigroup of (Z,+).
2) The set of all regular matrices together with multiplication of matrices forms a sub-

semigroup of (Mn, ·), where Mn is the set of all square matrices of order n.
3) The set of all positive real numbers together with multiplication forms a subsemigroup

of (R, ·).

Example of a subset that does not form a subsemigroup. The set of all regular
square matrices of order n together with addition of matrices does not form a subsemigroup
of (Mn,+). Indeed, it does not hold that sum of two regular matrices is a regular matrix,
e.g. coincide the identity matrix E. Then E and −E are regular matrices but E + (−E) is
the zero matrix which is not regular.

3.1.17 Submonoids.

Definition. Given a monoid (S, ◦, e). A subset T ⊆ S forms a submonoid if it forms a
subsemigroup and moreover e ∈ T . (In this case (T, ◦, e) is also a monoid.) �

Examples of submonoids.

1) The set of all natural numbers N together with addition is a submonoid of (Z,+, 0),
since 0 ∈ N.

2) The set of all regular square matrices of order n together with multiplication of matrices
forms a submonoid of (Mn, ·, E), since the identity matrix E is regular.

3) Denote by TX the set of all mappings from a set X into itself. Consider the operation
composition of mappings ◦. Then (TX , ◦, id) where id is the identity mapping (defined
by id(x) = x for all x ∈ X) is a monoid. The set of all bijections from TX forms a
submonoid of (TX , ◦), indeed, a composition of two bijections is a bijection, and the
identity mapping is a bijection.

3.1.18 Remark. Notice that a subsemigroup (T, ◦) of (S, ◦, e) may contain a neutral
element which is different from the neutral element e (but in this case e 6∈ T ). If this is
the case (T, ◦) is a subsemigroup of (S, ◦) but not a submonoid of (S, ◦, e). Next, there is an
example of such a situation.

Example. Let X = {1, 2, 3}. Denote by S the set of all mappings from X to X. Then
(S, ◦, id) is a monoid (◦ is the composition of mappings, id is the identity mapping).

Consider the mapping f :X → X defined by f(1) = 2, f(2) = 3, f(3) = 4, and f(4) = 2.
Then f4 = f and T = {f, f2, f3} forms a subsemigroup of (S, ◦, id). T does not form a
submonoid, since id 6∈ T . On the other hand, f3 is the neutral element of (T, ◦) and (T, ◦, f3)
is in fact a group. Indeed, f ◦ f3 = f = f3 ◦ f , f2 ◦ f3 = f2 = f3 ◦ f2, and f3 ◦ f3 = f3.

3.1.19 The Group of Invertible Elements. Every monoid contains a special sub-
monoid, the one formed by all invertible elements. And this submonoid is in fact a group that
is called the group of invertible elements. Let us first prove the following proposition which
justifies the definition coming next.

Proposition. Given a monoid (S, ◦, e). Denote by S? the set of all its invertible elements.
Then (S?, ◦, e) is a submonoid of (S, ◦) which is a group. �

Justification. The above proposition immediately follows from 3.1.9. Indeed, e ∈ S?, and if
a, b ∈ S? then a ◦ b ∈ S?. So S? forms a submonoid.

Moreover, (S?, ◦, e) is a group because if a ∈ S? then a−1 ∈ S?. �

Definition. The group (S?, ◦, e) is called the group of invertible elements of the monoid S.
�
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3.1.20 The following theorem is an important fact and is used in a lot of applications. In
fact it holds for any finite group but we will state and prove it only for commutative ones
now.

Theorem. Let (G, ◦, e) be a finite commutative group. Then for every a ∈ G we have
a|G| = e. �

Justification. Assume that the group has n elements and denote G = {a1, a2, . . . , an}. Take
any a ∈ G and form the set H = {a ◦ a1, a ◦ a2, . . . , a ◦ an}. The H has also n elements;
indeed, if a ◦ ai = a ◦ aj in a group then ai = aj (see 3.1.10).

Therefore, G = H and because G is a commutative group we have

a1 ◦ a2 ◦ . . . ◦ an = (a ◦ a1) ◦ (a ◦ a2) ◦ . . . ◦ (a ◦ an),

and also
a1 ◦ a2 ◦ . . . ◦ an = an ◦ (a1 ◦ a2 ◦ . . . ◦ an).

If we multiply the last equality by (a1 ◦ a2 ◦ . . . ◦ an)−1 we get an = e. �

3.2 Applications to (Zn, ·, 1)
Let us first introduce the Euler function.

3.2.1 Euler function. Given a natural number n > 1. Then the value of Euler function
φ(n) equals to the number of all natural numbers i, 0 ≤ i < n, that are relatively prime to n.

�

For example φ(6) = 2, since there are only two natural numbers between 0 and 5 that are
relatively prime to 6, namely 1 and 5.

3.2.2 Properties of Euler Function.

1. Let p be a prime number, then φ(p) = p− 1.
2. If p is a prime number and k ≥ 1 then φ(pk) = pk − pk−1.
3. If n and m are relatively prime natural numbers then φ(n ·m) = φ(n) · φ(m).

�

It is not difficult to show the first two properties above. The easiest way how to prove the
last one is to use the Chinese Remainder Theorem which is beyond the scope of this course.

3.2.3 The Group of Invertible Elements of (Zn, ·, 1). We will use the facts from 3.1.19
for the commutative monoid (Zn, ·, 1). We know (Zn, ·) is a monoid with its neutral element
1. The set of all invertible elements of it is

Z?n = {i | 0 ≤ i < n, i and n are relatively prime}.

Therefore, (Z?n, ·, 1) is a group with φ(n) elements where φ(n) is the Euler function of n.

3.2.4 Euler-Fermat Theorem. Applying 3.1.20 we get a theorem which generalizes of
the small Fermat theorem:

Theorem (Euler-Fermat). Given a natural number n > 1. Then for every integer a
relatively prime to n we have

aφ(n) ≡ 1 (modn).

�
Justification. Indeed, take any integer a relatively prime to n. Put b to be the remainder
when we divide a by n. Then b ∈ Z?n. Since (Z?n, ·, 1) is a finite group with φ(n) elements,
the Euler-Fermat Theorem is a consequence of 3.1.20. �

Remark. The small Fermat theorem is an immediate consequence of the Euler-Fermat
theorem. Indeed, if n is a prime number then φ(n) = n− 1.
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3.3 Subgroups

Analogously as we defined subsemigroups and submonoids we can define subgroups. Sub-
groups are formed by subsets that not only form itself a group but group with the original
operations. More precisely:

Definition. Given a group (G, ◦, e). We say that H ⊆ G forms a subgroup of (G, ◦, e) if

1. for every x, y ∈ H it holds that x ◦ y ∈ H, (i.e. forms a subsemigroup);
2. e ∈ H, (i.e. forms a submonoid);
3. for every x ∈ H it holds that x−1 ∈ H.

�
Note, that in this case, (H, ◦, e) is also a group.

Remark. Every group (G, ◦, e) with more than one element has at least two subgroups;
indeed, one formed by {e} and second formed by G. These two subgroups are called trivial
subgroups.

3.3.1 How Many Elements a Subgroup Can Have? We will show some useful
properties of finite groups and their subgroups. The first theorem shows that a subset of
a group can form a subgroup only if its number of elements divides the number of elements
of the group. Hence, (Z7,+, 0) has only trivial subgroups; indeed, 7 is a prime number with
divisors 1 and 7. And any subgroup with 1 element consists of 0, a subgroup with 7 elements
is (Z7,+, 0).

Theorem. Let (G, ◦, e) be a finite group and H ⊆ G its subgroup. Then the number of
elements of H divides the number of elements of G. �

Justification. Let us denote n = |G| and k = |H|. For every g ∈ G we form a subset of G:
g ◦H = {g ◦ x |x ∈ H}.

We show that for every g1, g2 ∈ G the sets g1 ◦H and g2 ◦H are either the same or they
are disjoint (they do not have a common element).

Assume that (g1◦H)∩(g2◦H) 6= ∅. Then there exist h1, h2 ∈ H such that g1◦h1 = g2◦h2.
Since we are in a group, we have

g1 = (g2 ◦ h2) ◦ h−11 = g2 ◦ (h2 ◦ h−11 ) and g2 = (g1 ◦ h1) ◦ h−12 = g1 ◦ (h1 ◦ h−12 ). (3.5)

This means that g1 ∈ g2◦H and q2 ∈ g1◦H, (indeed, H is a subgroup so h2◦h−11 , h1◦h−12 ∈ H).

Now, take an arbitrary element x ∈ g1 ◦H. Then x = g1 ◦h for some h ∈ H. Substituting
form 3.5 we get

x = (g2 ◦ (h2 ◦ h−11 )) ◦ h = g2 ◦ (h2 ◦ h−11 ◦ h) and so x ∈ g2 ◦H.

Indeed, H is a subgroup so h2 ◦ h1 ◦ h belongs to H.

Similarly, one gets that any z ∈ g2 ◦ H belongs to g1 ◦ H. So, we have shown that
g1 ◦H = g2 ◦H.

H is a subgroup, so e ∈ H, and therefore g ∈ g ◦ H for every g ∈ G. This means that
every element from G belongs to some g′ ◦ H. Hence, the system {g ◦ H | g ∈ G} forms a
partition of G.

To finish the argument, we show that all sets g ◦ H have the same number of elements
which is k = |H|. Denote H = {h1, . . . , hk}. Then

g ◦H = {g ◦ h1, . . . , g ◦ hk}.

If g ◦hi = g ◦hj then (g−1 ◦g)◦hi = (g−1 ◦g)◦h2, which means that hi = hj (see also 3.1.10).

We have shown that the set of n elements is divided into disjoint parts each of them having
k elements. Hence n is divisible by k. (Note that there are n/k distinct sets g ◦H.) �
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3.3.2 Order of a Finite Group. The number of elements of a finite group (G, ◦, e) is
often called its order. The above theorem can be formulated as follows: The order of any
subgroup (H, ◦, e) of a finite group (G, ◦, e) divides the order of (G, ◦, e).
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