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3.3.3 Subgroup Generated by an Element, Order of an Element. Let (G, ◦, e) be
a finite group, choose an element a ∈ G. Consider the set of all powers of a:

{a, a2, a3, . . . , ak, . . .}.

Since G is a finite set, there must exist i and j, i 6= j, such that ai = aj . Let us assume that
i is the exponent which is smaller than j. We are in a group, so there exists a−1. Therefore

ai = aj implies ai−1 = aj−1, etc. e = a0 = aj−i.

Hence, we have proved the first part of the following proposition:

Proposition. Let (G, ◦, e) be a finite group, a ∈ G. Then there exists the smallest positive
integer r for which ar = e. Moreover, {a, a2, . . . , ar} forms a subgroup of (G, ◦, e). �

Justification. The second part follows from the fact that

1. ai ◦ aj = ai+j = ak where k ≡ i+ j mod r.
2. ar = e ∈ {a, a2, . . . , ar}.
3. (ai)−1 = ar−i.

Definition. The subgroup formed by {a, a2, . . . , ar} is called the subgroup generated by a
and will be denoted by 〈a〉.

The number of elements of 〈a〉 (i.e. the smallest positive r for which ar = e) is called the
order of a and it is denoted by r(a). �

Note that the order of a is in fact the order of the subgroup 〈a〉.

3.3.4 The fact that 〈a〉 forms a subgroup of (G, ◦, e) gives us

Corollary. Given a finite group (G, ◦, n) with n elements. Then the order of any element
a ∈ G divides n.

This proposition is a direct consequence of 3.3.1. Indeed, 〈a〉 is a subgroup of the group
(G, ·, e) having r(a) elements.

3.3.5 Theorem. Given a finite group (G, ◦, e) with n elements. Then for every a ∈ G we
have

an = e.

Justification. Indeed, since r(a) divides n, we get

an = ak r(a) = (ar(a))k = ek = e.

�

3.3.6 A Characterization of the Order r(a). The following proposition will help us for
example to find the order of of powers of a given element (see ??) of a finite group.

Proposition. A number r equals to the order r(a) of a in a finite group (G, ·, e) if and only
if the following two conditions are satisfied:

1) ar = e.
2) If as = e for some natural number s then r divides s.

�
Justification. a) Let us assume that r satisfies the two conditions above. Then clearly, r is
the smallest positive integer for which ar = e; hence r = r(a).

b) Denote the order r(a) by r. We show that r satisfies the two conditions above. The
first condition is obvious. Consider any s for which as = e. Divide s by r, we get s = qr + z
where the remainder z satisfies 0 ≤ z < r. Then

e = as = aqr+z = (ar)q · az = eq · az = az.

Since z is strictly smaller than r, and r is the smallest positive number for which ai = e, we
get z = 0. And hence r divides s. �
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3.3.7 Cyclic Group, a Generating Element of a Group. There is a special type of
groups, in fact the “most simple” ones, where the calculation corresponds to the addition in
Zr. More precisely:

Definition. Given a group G = (G, ◦, e). If there exists an element a ∈ G for which 〈a〉 = G
we say that the group is cyclic and that a is a generating element of (G, ◦, e). �

Remark. Note that a cyclic group does not need to be finite. Even in an infinite group
(G, ◦, e) we can form a subgroup generated by a ∈ G, indeed,

〈a〉 = {. . . , a−2, a−1, a0, a1, a2, . . .} = {ai | i ∈ Z}.

If 〈a〉 = G then the group is cyclic.

3.3.8 Examples.

1. (Zn,+, 0) (for any natural number n > 1) is a cyclic group with its generating element 1.

2. For every prime number p the group (Z?
p, ·, 1) is a cyclic group. It is not straightforward

to show it. Moreover, to find a generating element is a difficult task for some primes p.

3. The group (Z?
8, ·, 1) is not cyclic. We have Z?

8 = {1, 3, 5, 7} and 32 = 1, 52 = 1 and
7−1 = 1. So, there is no element with order 4.

4. (Z,+, 0) of all integers together with addition is a cyclic group; its generating element
is 1.

3.3.9 Observation. One can reformulate the definition of a finite cyclic group: A finite
group G = (G, ◦, e) of order n is cyclic if and only if there exists a ∈ G with its order r(a) = n.

3.3.10 Order of a Power of a. If we know the order of an element of a in a finite group
(G, ◦, e) then we can determine the order of ai for any i ∈ N, see the following proposition.

Proposition. Let G = (G, ◦, e) be a finite group. Let a ∈ G have order r(a). Then

r(ai) =
r(a)

gcd(r(a), i)
.

�
Justification. We will show that the number r(a)

gcd(r(a),i) satisfies the conditions of proposition

3.3.9 and hence it is r(ai).

Denote r = r(a), and d = gcd(i, r). Then we can write i = d i′ and r = d r′ where i′ and

r′ are relatively prime. With this notation r(a)
gcd(r(a),i) equals to r′.

We show the first condition from 3.3.6: we have

(ai)r
′

= ai r
′

= ai
′ d r′ = (ad r′)i

′
= (ar)i

′
= e.

The second condition from 3.3.6: Assume that (ai)s = a. Then ai s = e. Since r is the order
of a, necessarily r divides i s. Further

i s = k r, i.e. i′ d s = k r′ d and i′ s = k r′.

Numbers i′ and r′ are relatively prime, and r′ divides i′ s, hence r′ divides s. So r′ is the
order of ai as required. �

3.3.11 Observation. The proposition above helps to find orders of all elements b belonging
to 〈a〉. Indeed, we know that the subgroup 〈a〉 is a cyclic group having a as its generating
element. So we can use the proposition from 3.3.9 for every element b ∈ 〈a〉. Especially, if we
know a generating element of a cyclic group we can find orders of all elements of the group.
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3.3.12 The proposition in 3.3.9 can be used to calculate the number of generating elements
in any finite cyclic group. Indeed, if a is a generating element of a finite cyclic group
G = (G, ◦, e) with n elements, then b = ai is also a generating element of G if and only
if gcd(i, n) = 1; and there are φ(n) such i’s. Hence we get the following corollary

Corollary. Given a finite cyclic group G = (G, ◦, e) with n elements. Then G has φ(n)
different generating elements. �

3.3.13 Subgroups of a Finite Cyclic Group. Subgroups of a finite cyclic group are
easy to describe. The next proposition states that a finite cyclic group with n elements has a
subgroup of order d for any divisor d of n. Notice, that it is not true for a finite group which
is not cyclic.

Proposition. Given a finite cyclic group G = (G, ◦, e) with n elements. Then for every
natural number d which divides n there exists a subgroup of G with d elements. �

Justification. Denote by a one of generating elements of the group G. Then the subgroup
〈ak〉 where k = n

d had d elements. Indeed, we have

〈ak〉 = {ak, a2k, . . . , adk = e}.

3.3.14 Remark. A finite cyclic group has only subgroups that itself are cyclic.

Justification. Let G = (G, ◦, e) be a finite cyclic group with a generating element a. Consider
two elements b, c ∈ G; then b = ai and c = aj for some i, j ∈ {1, 2, . . . , |G|}. Any subgroup
which contains these two elements must contain also all elements of the form aix+jy where x
and y are any integers. From the Bezout’s Theorem we know that the equation ix+ jy = k
has integer solutions if and only if the greatest common divisor of i and j divides k. Therefore
the smallest subgroup containing b = ai and c = aj is 〈ad〉 where d = gcd(i, j).
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