3.3.3 Subgroup Generated by an Element, Order of an Element. Let (G, \circ, e) be a finite group, choose an element $a \in G$. Consider the set of all powers of a:

$${a, a^2, a^3, \dots, a^k, \dots}.$$

Since G is a finite set, there must exist i and j, $i \neq j$, such that $a^i = a^j$. Let us assume that i is the exponent which is smaller than j. We are in a group, so there exists a^{-1} . Therefore

$$a^{i} = a^{j}$$
 implies $a^{i-1} = a^{j-1}$, etc. $e = a^{0} = a^{j-i}$.

Hence, we have proved the first part of the following proposition:

Proposition. Let (G, \circ, e) be a finite group, $a \in G$. Then there exists the smallest positive integer r for which $a^r = e$. Moreover, $\{a, a^2, \dots, a^r\}$ forms a subgroup of (G, \circ, e) . Justification. The second part follows from the fact that

- 1. $a^i \circ a^j = a^{i+j} = a^k$ where $k \equiv i + j \mod r$.
- 2. $a^r = e \in \{a, a^2, \dots, a^r\}$. 3. $(a^i)^{-1} = a^{r-i}$.

Definition. The subgroup formed by $\{a, a^2, \dots, a^r\}$ is called the subgroup generated by a and will be denoted by $\langle a \rangle$.

The number of elements of $\langle a \rangle$ (i.e. the smallest positive r for which $a^r = e$) is called the order of a and it is denoted by r(a).

Note that the order of a is in fact the order of the subgroup $\langle a \rangle$.

3.3.4 The fact that $\langle a \rangle$ forms a subgroup of (G, \circ, e) gives us

Corollary. Given a finite group (G, \circ, n) with n elements. Then the order of any element $a \in G$ divides n.

This proposition is a direct consequence of 3.3.1. Indeed, $\langle a \rangle$ is a subgroup of the group (G,\cdot,e) having r(a) elements.

3.3.5 **Theorem.** Given a finite group (G, \circ, e) with n elements. Then for every $a \in G$ we have

$$a^n = e$$
.

Justification. Indeed, since r(a) divides n, we get

$$a^n = a^{k r(a)} = (a^{r(a)})^k = e^k = e.$$

A Characterization of the Order r(a). The following proposition will help us for example to find the order of of powers of a given element (see ??) of a finite group.

Proposition. A number r equals to the order r(a) of a in a finite group (G, \cdot, e) if and only if the following two conditions are satisfied:

- 1) $a^r = e$.
- 2) If $a^s = e$ for some natural number s then r divides s.

Justification. a) Let us assume that r satisfies the two conditions above. Then clearly, r is the smallest positive integer for which $a^r = e$; hence r = r(a).

b) Denote the order r(a) by r. We show that r satisfies the two conditions above. The first condition is obvious. Consider any s for which $a^s = e$. Divide s by r, we get s = qr + zwhere the remainder z satisfies $0 \le z < r$. Then

$$e = a^{s} = a^{qr+z} = (a^{r})^{q} \cdot a^{z} = e^{q} \cdot a^{z} = a^{z}.$$

Since z is strictly smaller than r, and r is the smallest positive number for which $a^i = e$, we get z = 0. And hence r divides s.

3.3.7 Cyclic Group, a Generating Element of a Group. There is a special type of groups, in fact the "most simple" ones, where the calculation corresponds to the addition in \mathbb{Z}_r . More precisely:

Definition. Given a group $\mathcal{G} = (G, \circ, e)$. If there exists an element $a \in G$ for which $\langle a \rangle = G$ we say that the group is *cyclic* and that a is a generating element of (G, \circ, e) .

Remark. Note that a cyclic group does not need to be finite. Even in an infinite group (G, \circ, e) we can form a subgroup generated by $a \in G$, indeed,

$$\langle a \rangle = \{\dots, a^{-2}, a^{-1}, a^0, a^1, a^2, \dots\} = \{a^i \mid i \in \mathbb{Z}\}.$$

If $\langle a \rangle = G$ then the group is cyclic.

3.3.8 Examples.

- 1. $(\mathbb{Z}_n, +, 0)$ (for any natural number n > 1) is a cyclic group with its generating element 1.
- 2. For every prime number p the group $(\mathbb{Z}_p^*,\cdot,1)$ is a cyclic group. It is not straightforward to show it. Moreover, to find a generating element is a difficult task for some primes p.
- 3. The group $(\mathbb{Z}_8^{\star}, \cdot, 1)$ is not cyclic. We have $\mathbb{Z}_8^{\star} = \{1, 3, 5, 7\}$ and $3^2 = 1$, $5^2 = 1$ and $7^{-1} = 1$. So, there is no element with order 4.
- 4. $(\mathbb{Z}, +, 0)$ of all integers together with addition is a cyclic group; its generating element is 1.
- **3.3.9 Observation.** One can reformulate the definition of a finite cyclic group: A finite group $\mathcal{G} = (G, \circ, e)$ of order n is cyclic if and only if there exists $a \in G$ with its order r(a) = n.
- **3.3.10** Order of a Power of a. If we know the order of an element of a in a finite group (G, \circ, e) then we can determine the order of a^i for any $i \in \mathbb{N}$, see the following proposition.

Proposition. Let $\mathcal{G} = (G, \circ, e)$ be a finite group. Let $a \in G$ have order r(a). Then

$$r(a^i) = \frac{r(a)}{\gcd(r(a), i)}.$$

Justification. We will show that the number $\frac{r(a)}{\gcd(r(a),i)}$ satisfies the conditions of proposition 3.3.9 and hence it is $r(a^i)$.

Denote r = r(a), and $d = \gcd(i, r)$. Then we can write i = di' and r = dr' where i' and r' are relatively prime. With this notation $\frac{r(a)}{\gcd(r(a),i)}$ equals to r'.

We show the first condition from 3.3.6: we have

$$(a^i)^{r'} = a^{i\,r'} = a^{i'\,d\,r'} = (a^{d\,r'})^{i'} = (a^r)^{i'} = e.$$

The second condition from 3.3.6: Assume that $(a^i)^s = a$. Then $a^{is} = e$. Since r is the order of a, necessarily r divides is. Further

$$is = kr$$
, i.e. $i'ds = kr'd$ and $i's = kr'$.

Numbers i' and r' are relatively prime, and r' divides i's, hence r' divides s. So r' is the order of a^i as required.

3.3.11 Observation. The proposition above helps to find orders of all elements b belonging to $\langle a \rangle$. Indeed, we know that the subgroup $\langle a \rangle$ is a cyclic group having a as its generating element. So we can use the proposition from 3.3.9 for every element $b \in \langle a \rangle$. Especially, if we know a generating element of a cyclic group we can find orders of all elements of the group.

П

3.3.12 The proposition in 3.3.9 can be used to calculate the number of generating elements in any finite cyclic group. Indeed, if a is a generating element of a finite cyclic group $\mathcal{G} = (G, \circ, e)$ with n elements, then $b = a^i$ is also a generating element of \mathcal{G} if and only if $\gcd(i, n) = 1$; and there are $\phi(n)$ such i's. Hence we get the following corollary

Corollary. Given a finite cyclic group $\mathcal{G} = (G, \circ, e)$ with n elements. Then \mathcal{G} has $\phi(n)$ different generating elements.

3.3.13 Subgroups of a Finite Cyclic Group. Subgroups of a finite cyclic group are easy to describe. The next proposition states that a finite cyclic group with n elements has a subgroup of order d for any divisor d of n. Notice, that it is not true for a finite group which is not cyclic.

Proposition. Given a finite cyclic group $\mathcal{G} = (G, \circ, e)$ with n elements. Then for every natural number d which divides n there exists a subgroup of \mathcal{G} with d elements. \square

Justification. Denote by a one of generating elements of the group \mathcal{G} . Then the subgroup $\langle a^k \rangle$ where $k = \frac{n}{d}$ had d elements. Indeed, we have

$$\langle a^k \rangle = \{a^k, a^{2k}, \dots, a^{dk} = e\}.$$

3.3.14 Remark. A finite cyclic group has only subgroups that itself are cyclic.

Justification. Let $\mathcal{G}=(G,\circ,e)$ be a finite cyclic group with a generating element a. Consider two elements $b,c\in G$; then $b=a^i$ and $c=a^j$ for some $i,j\in\{1,2,\ldots,|G|\}$. Any subgroup which contains these two elements must contain also all elements of the form a^{ix+jy} where x and y are any integers. From the Bezout's Theorem we know that the equation ix+jy=k has integer solutions if and only if the greatest common divisor of i and j divides k. Therefore the smallest subgroup containing $b=a^i$ and $c=a^j$ is $\langle a^d \rangle$ where $d=\gcd(i,j)$.