4.3 Non-homogeneous Linear Difference Equations with Constant coefficients

4.3.1 A Quasi-polynomial. A function of the form $f(n)=P(n) \beta^{n}$ is called a quasipolynomial.

For example, $f(n)=3 n^{2}(-1)^{n}$ is a quasi-polynomial, n^{2} is a polynomial of degree 2, and $\beta=-1$. At the same time, $f(n)=n+1$ is a quasi-polynomial; here $f(n)=(n+1) 1^{n}$ and $n+1$ is a polynomial of degree 1 , and $\beta=1$.
4.3.2 An Estimate of One Solution of a Non-homogeneous Equation. Given a linear equation with constant coefficients

$$
\begin{equation*}
a_{n+k}+c_{k-1} a_{n+k-1}+\ldots+c_{1} a_{n+1}+c_{0} a_{n}=b_{n} . \tag{4.8}
\end{equation*}
$$

Let the right hand side b_{n} be a quasi-polynomial, $b_{n}=P(n) \lambda^{n}$.
Then one of solutions of 4.8 is

$$
\hat{a}_{n}=Q(n) n^{t} \beta^{n}
$$

where $Q(n)$ is a general polynomial of the same degree as $P(n)$ has, and t is the multiplicity of β as a root of the characteristic equation of the associated homogeneous equation.
4.3.3 How to Use the Estimate. Once we have got an estimate $\left\{\hat{a}_{n}\right\}$ of one solution of the non-homogeneous equation 4.8, we substitute it into the equation 4.8 and we get a system of linear equations for unknown coefficients of the polynomial $Q(n)$. If the estimate we made was correct, the system has a unique solution.
4.3.4 Example. Find one solution of the following non-homogeneous equation

$$
\begin{equation*}
a_{n+2}+4 a_{n+1}-5 a_{n}=18 n^{2} \tag{4.9}
\end{equation*}
$$

Solution. First of all, we have to find and solve the characteristic equation of the associated homogeneous equation

$$
\lambda^{2}+4 \lambda-5=0
$$

The equation has two solutions: $\lambda=1$ and $\lambda=-5$.
Further, $b_{n}=\left(18 n^{2}+2\right) 1^{n}$, hence we have the following estimate

$$
\hat{a_{n}}=\left(A n^{2}+B n+C\right) n^{1} 1^{n} ;
$$

indeed, $A n^{2}+B n+C$ is a general polynomial of degree 2 , and $\beta=1$ is a root of the characteristic equation of multiplicity 1 . Therefore, we assume

$$
\hat{a_{n}}=A n^{3}+B n^{2}+C n .
$$

If we substitute the estimate above into 4.9 we obtain
$A(n+2)^{3}+B(n+2)^{2}+C(n+2)+4\left(A(n+1)^{3}+B(n+1)^{2}+C(n+1)\right)--5\left(A n^{3}+B n^{2}+C n\right)=n^{2}+1$.
From the above identity of two polynomials we obtain

$$
18 A n^{2}+(24 A+12 B) n+(12 A+8 B+6 C)=18 n^{2}+2 .
$$

Hence we get the following system of linear equations for unknown A, B, and C.

$18 A$	$=18$
$24 A+12 B$	$=0$
$12 A+8 B+6 C$	$=2$

Thus, $A=1, B=-2$, and $C=1$.
We have got $\hat{a}_{n}=n^{3}-2 n^{2}+n$ is one solution of the non-homogeneous equation 4.8

4.3.5 A Procedure for Solving Linear Difference Equations with Constant Co-

efficients. Given a linear difference equation with constant coefficients

$$
\begin{equation*}
a_{n+k}+c_{k-1} a_{n+k-1}+\ldots+c_{1} a_{n+1}+c_{0} a_{n}=b_{n} \tag{4.10}
\end{equation*}
$$

1) We find a general solution of the associated homogeneous equation

$$
\begin{equation*}
a_{n+k}+c_{k-1} a_{n+k-1}+\ldots+c_{1} a_{n+1}+c_{0} a_{n}=0 \tag{4.11}
\end{equation*}
$$

It means, we first find roots of the characteristic equation

$$
\lambda^{k}+c_{k-1} \lambda^{k-1}+\ldots+c_{1} \lambda+c_{0}=0
$$

2) For the quasi-polynomial right hand side, $b_{n}=P(n) \beta^{n}$ we made an estimate $\hat{a}_{n}=$ $Q(n) n^{t} \beta^{n}$, where $Q(n)$ is a general polynomial of the same degree as $P(n), t$ is the multiplicity of β as a root of the characteristic equation.
3) We substitute \hat{a}_{n} into the equation 4.10 and comparing coefficients of the two (equal) polynomials we calculate the unknown coefficients of the polynomial $Q(n)$.
4) General solution of the non-homogeneous equation 4.10 is the sum of a general solution of the associated homogeneous equation and the solution \hat{a}_{n} from 3).
5) If we are given the initial conditions $a_{0}, a_{1}, \ldots, a_{k-1}$, we substitute into the general solution $n=0, n=1, \ldots, n=k-1$ and obtain the unknown coefficients from the general solution of the associated homogeneous equation 4.11.
