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4.4 Asymptotic growth of functions

4.4.1 Symbol O. Given a nonnegative function g(n), we say that a nonnegative function
f(n) is O(g(n)) if there exist a positive constant c and a natural number n0 such that

f(n) ≤ c g(n) for all n ≥ n0.

We can consider O(g(n)) to be the class of all nonnegative functions f(n):

O(g(n)) = {f(n) | ∃c > 0, n0 such that f(n) ≤ c g(n) ∀n ≥ n0}.

4.4.2 Symbol Ω. Given a nonnegative function g(n), we say that a nonnegative function
f(n) is Ω(g(n)) if there exists a positive constant c and a natural number n0 such that

f(n) ≥ c g(n) for all n ≥ n0.

We can consider Ω(g(n)) to be the class of all nonnegative functions f(n):

Ω(g(n)) = {f(n) | ∃c > 0, n0 such that f(n) ≥ c g(n) ∀n ≥ n0}.

4.4.3 Remark. It holds that a function f(n) is Ω(g(n)) iff the function g(n) is O(f(n)).

4.4.4 Symbol Θ. Given a nonnegative function g(n), we say that a non negative function
f(n) is Θ(g(n)) if there exists positive constants c1, c2 and a natural number n0 such that

c1 g(n) ≤ f(n) ≤ c2 g(n) for all n ≥ n0.

We can consider Θ(g(n)) to be the class of all nonnegative functions f(n):

Θ(g(n)) = {f(n) | ∃c1, c2 > 0, n0 such that c1 g(n) ≤ f(n) ≤ c2 g(n) ∀n ≥ n0}.

4.4.5 Remark. We have f(n) is Θ(g(n)) if and only if f(n) is both O(g(n)) and Ω(g(n)).

4.4.6 Symbol small o. Given a nonnegative function g(n). We say that a nonnegative
function f(n) is o(g(n)) if for every positive constant c there exists a natural number n0 such
that

0 ≤ f(n) < c g(n) for all n ≥ n0.

We can consider o(g(n)) to be the class of all nonnegative functions f(n):

o(g(n)) = {f(n) | ∀ c > 0 ∃n0 such that 0 ≤ f(n) < c g(n) ∀n > n0}.

4.4.7 Remark. A nonnegative function f(n) is O(g(n)) roughly means that the function
f(n) does not grow asymptotically more than g(n). On the other hand, to say that a non-
negative function f(n) is o(g(n)) roughly means that the function f(n) grows asymptotically
less than the function g(n).

4.4.8 Symbol small ω. Given a nonnegative function g(n), we say that a nonnegative
function f(n) is ω(g(n)) if for every positive constant c there exists a natural number n0 such
that

0 ≤ c g(n) < f(n) for all n ≥ n0.

We can consider ω(g(n)) to be a class of all nonnegative functions f(n):

ω(g(n)) = {f(n) | ∀ c > 0 there is n0 such that 0 ≤ c g(n) < f(n) ∀n > n0}.

4.4.9 Remark. Roughly speaking, we say that a nonnegative function f(n) is Ω(g(n))
means that the function f(n) grows asymptotically at least as the function g(n). On the
other hand, f(n) is ω(g(n)) means roughly that the function f(n) grows asymptotically more
than the function g(n).
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4.4.10 Notation. Symbols O,Ω,Θ, o, ω represent classes of functions so we will write
f(n) ∈ O(g(n)); similarly for other symbols Ω.Θ, o, ω.

4.4.11 Proposition. Given two nonnegative functions f(n) and g(n), then

• f(n) ∈ o(g(n)) if and only if limn→∞
f(n)
g(n) ∈ 0;

• f(n) ∈ ω(g(n)) if and only if limn→∞
f(n)
g(n) =∞.

Justification. Let us write what it meas that limn→∞
f(n)
g(n) = 0:

∀ ε > 0 ∃n0 ∈ N such that ∀n ≥ n0 it holds |f(n)

g(n)
| < ε.

The fact | f(n)g(n) | < ε can be rewritten as f(n) < ε g(n). Denote c := ε, than we get that f(n)

is in o(g(n)).

3) Analogously, limn→∞
f(n)
g(n) = a, a > 0, means that

∀ ε > 0 ∃n0 ∈ N such that ∀n ≥ n0 it holds |f(n)

g(n)
− a| < ε.

Equivalently, (a− ε)g(n) < f(n) < (a + ε)g(n). Choose ε = a
2 , we get

a

2
g(n) < f(n) <

3a

2
g(n);

hence f(n) is Θ(g(n)).

4.4.12 Transitivity. Given three nonnegative functions f(n), g(n) and h(n).

1. If f(n) ∈ O(g(n)) and g(n) ∈ O(h(n)), then f(n) ∈ O(h(n)).

2. If f(n) ∈ Ω(g(n)) and g(n) ∈ Ω(h(n)), then f(n) ∈ Ω(h(n)).

3. If f(n) ∈ Θ(g(n)) and g(n) ∈ Θ(h(n)), then f(n) ∈ Θ(h(n)).

4.4.13 Reflexivity. For all nonnegative functions f(n), we have: f(n) ∈ O(f(n)), f(n) ∈
Ω(f(n)) and f(n) ∈ Θ(f(n)).

4.4.14 Proposition. f(n) ∈ Θ(g(n)) if and only if g(n) ∈ Θ(f(n)).

4.4.15 Examples.

1. For every a > 1 and b > 1, we have

loga(n) ∈ Θ(logb(n)).

2. It holds that

lg n! ∈ Θ(n lg n).

The second part of the above example follows from the following theorem.
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4.4.16 Theorem (Gauss). For every n ≥ 1

n
n
2 ≤ n! ≤

(
n + 1

2

)n

.

Justification. We will use the fact that for every two positive numbers a, b it holds that
a+b
2 ≥

√
ab.

Let us write (n!)2 as

(n!)2 = n (n− 1) . . . 2 1 1 2 . . . (n− 1)n =

n∏
i=1

(n− i + 1)i.

Therefore

n! =

n∏
i=1

√
(n− i + 1)i ≤

n∏
i=1

n + 1

2
=

(
n + 1

2

)n

,

since for every i we have
√

(n− i + 1)i ≤ n−i+1+i
2 . We have shown the first estimate.

On the other hand, for every i we have n ≤ (n− i+ 1)i, hence nn ≤ (n!)2. Since the both
expressions are positive, we can form their square root and get n

n
2 ≤ n!.

4.4.17 Theorem. Given a non negative function f(n) which is non decreasing. If f(n
2 ) ∈

Θ(f(n)), then
n∑

i=1

f(i) ∈ Θ(n f(n)).

Justification. The fact that
∑n

i=1 f(i) ∈ O(n f(n)) is clear: f is non decreasing.

Further, there is a positive constant c such that for sufficiently big n we have c f(n) ≤ f(n
2 ).

Hence
n∑

i=1

f(i) ≥ f(
n

2
) + . . . + f(n) ≥ n

2
c f(n).

This means that
∑n

i=1 f(i) ≥ c
2 n f(n) and therefore

∑n
i−1 f(i) ∈ Ω(n f(n)).

4.4.18 Remark. The property of the theorem above has for example f(n) = nd for a
natural number d ≥ 1. On the other hand the function f(n) = 2n does not fulfill it. To find
an asymptotic growth of

∑n
i=1 2i the following method can be used:

Using mathematical induction we show that there is a constant c > 0 such that

n∑
i=1

2i ≤ c 2n.

1. Basic step. We know that
∑1

i=1 2i = 2 and that 2 ≤ c 2 for every constant c ≥ 1.

2. Induction step. Assume that
∑n

i=1 2i ≤ c 2n. Then

n+1∑
i=1

2i =

n∑
i=1

2i + 2n+1 ≤ c 2n + 2n+1 =

(
1

2
+

1

c

)
c 2n+1.

Now, to finish the proof it suffices to find c such that 1
2 + 1

c ≤ 1. And this is equivalent with
the condition that c ≥ 2.
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4.4.19 There is another way how to deal with finding an asymptotic growth of functions
of the type

n∑
i=1

f(i).

We show it only for non decreasing functions f(n) (for non increasing you have to change the
inequalities): ∫ n

0

f(x) dx ≤
n∑

i=1

f(i) ≤
∫ n+1

1

f(x) dx.

If the integral is improper, it is useful to look for an estimate for
∑n

i=2 f(i) only.
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