4.4 Asymptotic growth of functions

4.4.1 Symbol \mathcal{O} . Given a nonnegative function g(n), we say that a nonnegative function f(n) is $\mathcal{O}(g(n))$ if there exist a positive constant c and a natural number n_0 such that

$$f(n) \le c g(n)$$
 for all $n \ge n_0$.

We can consider $\mathcal{O}(g(n))$ to be the class of all nonnegative functions f(n):

 $\mathcal{O}(g(n)) = \{ f(n) \mid \exists c > 0, n_0 \text{ such that } f(n) \le c g(n) \quad \forall n \ge n_0 \}.$

4.4.2 Symbol Ω . Given a nonnegative function g(n), we say that a nonnegative function f(n) is $\Omega(g(n))$ if there exists a positive constant c and a natural number n_0 such that

$$f(n) \ge c g(n)$$
 for all $n \ge n_0$.

We can consider $\Omega(g(n))$ to be the class of all nonnegative functions f(n):

 $\Omega(g(n)) = \{ f(n) \mid \exists c > 0, n_0 \text{ such that } f(n) \ge c g(n) \quad \forall n \ge n_0 \}.$

4.4.3 Remark. It holds that a function f(n) is $\Omega(g(n))$ iff the function g(n) is $\mathcal{O}(f(n))$.

4.4.4 Symbol Θ . Given a nonnegative function g(n), we say that a non negative function f(n) is $\Theta(g(n))$ if there exists positive constants c_1 , c_2 and a natural number n_0 such that

 $c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$.

We can consider $\Theta(g(n))$ to be the class of all nonnegative functions f(n):

 $\Theta(g(n)) = \{ f(n) \mid \exists c_1, c_2 > 0, n_0 \text{ such that } c_1 g(n) \le f(n) \le c_2 g(n) \ \forall n \ge n_0 \}.$

4.4.5 Remark. We have f(n) is $\Theta(g(n))$ if and only if f(n) is both $\mathcal{O}(g(n))$ and $\Omega(g(n))$.

4.4.6 Symbol small *o*. Given a nonnegative function g(n). We say that a nonnegative function f(n) is o(g(n)) if for every positive constant *c* there exists a natural number n_0 such that

$$0 \le f(n) < c g(n) \quad \text{for all } n \ge n_0.$$

We can consider o(g(n)) to be the class of all nonnegative functions f(n):

 $o(g(n)) = \{ f(n) \mid \forall c > 0 \ \exists n_0 \text{ such that } 0 \le f(n) < c g(n) \ \forall n > n_0 \}.$

4.4.7 Remark. A nonnegative function f(n) is $\mathcal{O}(g(n))$ roughly means that the function f(n) does not grow asymptotically more than g(n). On the other hand, to say that a nonnegative function f(n) is o(g(n)) roughly means that the function f(n) grows asymptotically less than the function g(n).

4.4.8 Symbol small ω . Given a nonnegative function g(n), we say that a nonnegative function f(n) is $\omega(g(n))$ if for every positive constant c there exists a natural number n_0 such that

$$0 \le c g(n) < f(n) \quad \text{for all } n \ge n_0.$$

We can consider $\omega(g(n))$ to be a class of all nonnegative functions f(n):

 $\omega(g(n)) = \{ f(n) \mid \forall c > 0 \text{ there is } n_0 \text{ such that } 0 \le c g(n) < f(n) \quad \forall n > n_0 \}.$

4.4.9 Remark. Roughly speaking, we say that a nonnegative function f(n) is $\Omega(g(n))$ means that the function f(n) grows asymptotically at least as the function g(n). On the other hand, f(n) is $\omega(g(n))$ means roughly that the function f(n) grows asymptotically more than the function g(n).

4.4.10 Notation. Symbols $\mathcal{O}, \Omega, \Theta, o, \omega$ represent classes of functions so we will write $f(n) \in \mathcal{O}(g(n))$; similarly for other symbols $\Omega.\Theta, o, \omega$.

4.4.11 Proposition. Given two nonnegative functions f(n) and g(n), then

- $f(n) \in o(g(n))$ if and only if $\lim_{n \to \infty} \frac{f(n)}{g(n)} \in 0$;
- $f(n) \in \omega(g(n))$ if and only if $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$.

Justification. Let us write what it meas that $\lim_{n\to\infty} \frac{f(n)}{q(n)} = 0$:

 $\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \text{ such that } \forall n \ge n_0 \text{ it holds } |\frac{f(n)}{g(n)}| < \varepsilon.$

The fact $|\frac{f(n)}{g(n)}| < \varepsilon$ can be rewritten as $f(n) < \varepsilon g(n)$. Denote $c := \varepsilon$, than we get that f(n) is in o(g(n)).

3) Analogously, $\lim_{n\to\infty} \frac{f(n)}{g(n)} = a, a > 0$, means that

$$\forall \varepsilon > 0 \ \exists \ n_0 \in \mathbb{N} \ \text{ such that } \ \forall \ n \ge n_0 \ \text{ it holds } \ \left| \frac{f(n)}{g(n)} - a \right| < \varepsilon.$$

Equivalently, $(a - \varepsilon)g(n) < f(n) < (a + \varepsilon)g(n)$. Choose $\varepsilon = \frac{a}{2}$, we get

$$\frac{a}{2}g(n) < f(n) < \frac{3a}{2}g(n);$$

hence f(n) is $\Theta(g(n))$.

4.4.12 Transitivity. Given three nonnegative functions f(n), g(n) and h(n).

- 1. If $f(n) \in \mathcal{O}(g(n))$ and $g(n) \in \mathcal{O}(h(n))$, then $f(n) \in \mathcal{O}(h(n))$.
- 2. If $f(n) \in \Omega(g(n))$ and $g(n) \in \Omega(h(n))$, then $f(n) \in \Omega(h(n))$.
- 3. If $f(n) \in \Theta(g(n))$ and $g(n) \in \Theta(h(n))$, then $f(n) \in \Theta(h(n))$.

4.4.13 Reflexivity. For all nonnegative functions f(n), we have: $f(n) \in \mathcal{O}(f(n))$, $f(n) \in \Omega(f(n))$ and $f(n) \in \Theta(f(n))$.

4.4.14 Proposition. $f(n) \in \Theta(g(n))$ if and only if $g(n) \in \Theta(f(n))$.

4.4.15 Examples.

1. For every a > 1 and b > 1, we have

$$\log_a(n) \in \Theta(\log_b(n)).$$

2. It holds that

$$\lg n! \in \Theta(n \lg n).$$

The second part of the above example follows from the following theorem.

4.4.16 Theorem (Gauss). For every $n \ge 1$

$$n^{\frac{n}{2}} \le n! \le \left(\frac{n+1}{2}\right)^n.$$

Justification. We will use the fact that for every two positive numbers a, b it holds that $\frac{a+b}{2} \ge \sqrt{ab}$.

Let us write $(n!)^2$ as

$$(n!)^2 = n(n-1)\dots 2112\dots(n-1)n = \prod_{i=1}^n (n-i+1)i.$$

Therefore

$$n! = \prod_{i=1}^{n} \sqrt{(n-i+1)i} \le \prod_{i=1}^{n} \frac{n+1}{2} = \left(\frac{n+1}{2}\right)^{n},$$

since for every i we have $\sqrt{(n-i+1)i} \leq \frac{n-i+1+i}{2}$. We have shown the first estimate.

On the other hand, for every *i* we have $n \leq (n-i+1)i$, hence $n^n \leq (n!)^2$. Since the both expressions are positive, we can form their square root and get $n^{\frac{n}{2}} \leq n!$.

4.4.17 Theorem. Given a non negative function f(n) which is non decreasing. If $f(\frac{n}{2}) \in \Theta(f(n))$, then

$$\sum_{i=1}^n f(i) \in \Theta(n\,f(n))$$

Justification. The fact that $\sum_{i=1}^{n} f(i) \in \mathcal{O}(n f(n))$ is clear: f is non decreasing.

Further, there is a positive constant c such that for sufficiently big n we have $c f(n) \leq f(\frac{n}{2})$. Hence

$$\sum_{i=1}^{n} f(i) \ge f(\frac{n}{2}) + \ldots + f(n) \ge \frac{n}{2} c f(n).$$

This means that $\sum_{i=1}^{n} f(i) \ge \frac{c}{2} n f(n)$ and therefore $\sum_{i=1}^{n} f(i) \in \Omega(n f(n))$.

4.4.18 Remark. The property of the theorem above has for example $f(n) = n^d$ for a natural number $d \ge 1$. On the other hand the function $f(n) = 2^n$ does not fulfill it. To find an asymptotic growth of $\sum_{i=1}^n 2^i$ the following method can be used:

Using mathematical induction we show that there is a constant c > 0 such that

$$\sum_{i=1}^{n} 2^i \le c \, 2^n.$$

- 1. Basic step. We know that $\sum_{i=1}^{1} 2^i = 2$ and that $2 \le c 2$ for every constant $c \ge 1$.
- 2. Induction step. Assume that $\sum_{i=1}^{n} 2^{i} \leq c 2^{n}$. Then

$$\sum_{i=1}^{n+1} 2^i = \sum_{i=1}^n 2^i + 2^{n+1} \le c \, 2^n + 2^{n+1} = \left(\frac{1}{2} + \frac{1}{c}\right) c \, 2^{n+1}.$$

Now, to finish the proof it suffices to find c such that $\frac{1}{2} + \frac{1}{c} \leq 1$. And this is equivalent with the condition that $c \geq 2$.

Marie Demlova: Discrete Mathematics

 ${\bf 4.4.19} \qquad {\rm There \ is \ another \ way \ how \ to \ deal \ with \ finding \ an \ asymptotic \ growth \ of \ functions \ of \ the \ type$

$$\sum_{i=1}^{n} f(i).$$

We show it only for non decreasing functions f(n) (for non increasing you have to change the inequalities):

$$\int_0^n f(x) \, dx \le \sum_{i=1}^n f(i) \le \int_1^{n+1} f(x) \, dx.$$

If the integral is improper, it is useful to look for an estimate for $\sum_{i=2}^{n} f(i)$ only.