4.4 Asymptotic growth of functions

4.4.1 Symbol \mathcal{O}. Given a nonnegative function $g(n)$, we say that a nonnegative function $f(n)$ is $\mathcal{O}(g(n))$ if there exist a positive constant c and a natural number n_{0} such that

$$
f(n) \leq c g(n) \quad \text { for all } n \geq n_{0} .
$$

We can consider $\mathcal{O}(g(n))$ to be the class of all nonnegative functions $f(n)$:

$$
\mathcal{O}(g(n))=\left\{f(n) \mid \exists c>0, n_{0} \text { such that } f(n) \leq c g(n) \forall n \geq n_{0}\right\}
$$

4.4.2 Symbol Ω. Given a nonnegative function $g(n)$, we say that a nonnegative function $f(n)$ is $\Omega(g(n))$ if there exists a positive constant c and a natural number n_{0} such that

$$
f(n) \geq c g(n) \quad \text { for all } n \geq n_{0} .
$$

We can consider $\Omega(g(n))$ to be the class of all nonnegative functions $f(n)$:

$$
\Omega(g(n))=\left\{f(n) \mid \exists c>0, n_{0} \text { such that } f(n) \geq c g(n) \forall n \geq n_{0}\right\}
$$

4.4.3 Remark. It holds that a function $f(n)$ is $\Omega(g(n))$ iff the function $g(n)$ is $\mathcal{O}(f(n))$.
4.4.4 Symbol Θ. Given a nonnegative function $g(n)$, we say that a non negative function $f(n)$ is $\Theta(g(n))$ if there exists positive constants c_{1}, c_{2} and a natural number n_{0} such that

$$
c_{1} g(n) \leq f(n) \leq c_{2} g(n) \quad \text { for all } n \geq n_{0}
$$

We can consider $\Theta(g(n))$ to be the class of all nonnegative functions $f(n)$:

$$
\Theta(g(n))=\left\{f(n) \mid \exists c_{1}, c_{2}>0, n_{0} \text { such that } c_{1} g(n) \leq f(n) \leq c_{2} g(n) \forall n \geq n_{0}\right\}
$$

4.4.5 Remark. We have $f(n)$ is $\Theta(g(n))$ if and only if $f(n)$ is both $\mathcal{O}(g(n))$ and $\Omega(g(n))$.
4.4.6 Symbol small o. Given a nonnegative function $g(n)$. We say that a nonnegative function $f(n)$ is $o(g(n))$ if for every positive constant c there exists a natural number n_{0} such that

$$
0 \leq f(n)<c g(n) \quad \text { for all } n \geq n_{0}
$$

We can consider $o(g(n))$ to be the class of all nonnegative functions $f(n)$:

$$
o(g(n))=\left\{f(n) \mid \forall c>0 \exists n_{0} \text { such that } 0 \leq f(n)<c g(n) \forall n>n_{0}\right\}
$$

4.4.7 Remark. A nonnegative function $f(n)$ is $\mathcal{O}(g(n))$ roughly means that the function $f(n)$ does not grow asymptotically more than $g(n)$. On the other hand, to say that a nonnegative function $f(n)$ is $o(g(n))$ roughly means that the function $f(n)$ grows asymptotically less than the function $g(n)$.
4.4.8 Symbol small ω. Given a nonnegative function $g(n)$, we say that a nonnegative function $f(n)$ is $\omega(g(n))$ if for every positive constant c there exists a natural number n_{0} such that

$$
0 \leq c g(n)<f(n) \quad \text { for all } n \geq n_{0}
$$

We can consider $\omega(g(n))$ to be a class of all nonnegative functions $f(n)$:

$$
\omega(g(n))=\left\{f(n) \mid \forall c>0 \text { there is } n_{0} \text { such that } 0 \leq c g(n)<f(n) \forall n>n_{0}\right\}
$$

4.4.9 Remark. Roughly speaking, we say that a nonnegative function $f(n)$ is $\Omega(g(n))$ means that the function $f(n)$ grows asymptotically at least as the function $g(n)$. On the other hand, $f(n)$ is $\omega(g(n))$ means roughly that the function $f(n)$ grows asymptotically more than the function $g(n)$.
4.4.10 Notation. Symbols $\mathcal{O}, \Omega, \Theta, o, \omega$ represent classes of functions so we will write $f(n) \in \mathcal{O}(g(n))$; similarly for other symbols $\Omega . \Theta, o, \omega$.
4.4.11 Proposition. Given two nonnegative functions $f(n)$ and $g(n)$, then

- $f(n) \in o(g(n))$ if and only if $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)} \in 0$;
- $f(n) \in \omega(g(n))$ if and only if $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$.

Justification. Let us write what it meas that $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$:

$$
\forall \varepsilon>0 \exists n_{0} \in \mathbb{N} \text { such that } \forall n \geq n_{0} \text { it holds }\left|\frac{f(n)}{g(n)}\right|<\varepsilon .
$$

The fact $\left|\frac{f(n)}{g(n)}\right|<\varepsilon$ can be rewritten as $f(n)<\varepsilon g(n)$. Denote $c:=\varepsilon$, than we get that $f(n)$ is in $o(g(n))$.
3) Analogously, $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=a, a>0$, means that

$$
\forall \varepsilon>0 \exists n_{0} \in \mathbb{N} \text { such that } \forall n \geq n_{0} \text { it holds }\left|\frac{f(n)}{g(n)}-a\right|<\varepsilon
$$

Equivalently, $(a-\varepsilon) g(n)<f(n)<(a+\varepsilon) g(n)$. Choose $\varepsilon=\frac{a}{2}$, we get

$$
\frac{a}{2} g(n)<f(n)<\frac{3 a}{2} g(n)
$$

hence $f(n)$ is $\Theta(g(n))$.
4.4.12 Transitivity. Given three nonnegative functions $f(n), g(n)$ and $h(n)$.

1. If $f(n) \in \mathcal{O}(g(n))$ and $g(n) \in \mathcal{O}(h(n))$, then $f(n) \in \mathcal{O}(h(n))$.
2. If $f(n) \in \Omega(g(n))$ and $g(n) \in \Omega(h(n))$, then $f(n) \in \Omega(h(n))$.
3. If $f(n) \in \Theta(g(n))$ and $g(n) \in \Theta(h(n))$, then $f(n) \in \Theta(h(n))$.
4.4.13 Reflexivity. For all nonnegative functions $f(n)$, we have: $f(n) \in \mathcal{O}(f(n)), f(n) \in$ $\Omega(f(n))$ and $f(n) \in \Theta(f(n))$.
4.4.14 Proposition. $f(n) \in \Theta(g(n))$ if and only if $g(n) \in \Theta(f(n))$.

4.4.15 Examples.

1. For every $a>1$ and $b>1$, we have

$$
\log _{a}(n) \in \Theta\left(\log _{b}(n)\right)
$$

2. It holds that

$$
\lg n!\in \Theta(n \lg n)
$$

The second part of the above example follows from the following theorem.
4.4.16 Theorem (Gauss). For every $n \geq 1$

$$
n^{\frac{n}{2}} \leq n!\leq\left(\frac{n+1}{2}\right)^{n}
$$

Justification. We will use the fact that for every two positive numbers a, b it holds that $\frac{a+b}{2} \geq \sqrt{a b}$.

Let us write $(n!)^{2}$ as

$$
(n!)^{2}=n(n-1) \ldots 2112 \ldots(n-1) n=\prod_{i=1}^{n}(n-i+1) i
$$

Therefore

$$
n!=\prod_{i=1}^{n} \sqrt{(n-i+1) i} \leq \prod_{i=1}^{n} \frac{n+1}{2}=\left(\frac{n+1}{2}\right)^{n}
$$

since for every i we have $\sqrt{(n-i+1) i} \leq \frac{n-i+1+i}{2}$. We have shown the first estimate.
On the other hand, for every i we have $n \leq(n-i+1) i$, hence $n^{n} \leq(n!)^{2}$. Since the both expressions are positive, we can form their square root and get $n^{\frac{n}{2}} \leq \bar{n}$!.
4.4.17 Theorem. Given a non negative function $f(n)$ which is non decreasing. If $f\left(\frac{n}{2}\right) \in$ $\Theta(f(n))$, then

$$
\sum_{i=1}^{n} f(i) \in \Theta(n f(n))
$$

Justification. The fact that $\sum_{i=1}^{n} f(i) \in \mathcal{O}(n f(n))$ is clear: f is non decreasing.
Further, there is a positive constant c such that for sufficiently big n we have $c f(n) \leq f\left(\frac{n}{2}\right)$. Hence

$$
\sum_{i=1}^{n} f(i) \geq f\left(\frac{n}{2}\right)+\ldots+f(n) \geq \frac{n}{2} c f(n)
$$

This means that $\sum_{i=1}^{n} f(i) \geq \frac{c}{2} n f(n)$ and therefore $\sum_{i-1}^{n} f(i) \in \Omega(n f(n))$.
4.4.18 Remark. The property of the theorem above has for example $f(n)=n^{d}$ for a natural number $d \geq 1$. On the other hand the function $f(n)=2^{n}$ does not fulfill it. To find an asymptotic growth of $\sum_{i=1}^{n} 2^{i}$ the following method can be used:

Using mathematical induction we show that there is a constant $c>0$ such that

$$
\sum_{i=1}^{n} 2^{i} \leq c 2^{n}
$$

1. Basic step. We know that $\sum_{i=1}^{1} 2^{i}=2$ and that $2 \leq c 2$ for every constant $c \geq 1$.
2. Induction step. Assume that $\sum_{i=1}^{n} 2^{i} \leq c 2^{n}$. Then

$$
\sum_{i=1}^{n+1} 2^{i}=\sum_{i=1}^{n} 2^{i}+2^{n+1} \leq c 2^{n}+2^{n+1}=\left(\frac{1}{2}+\frac{1}{c}\right) c 2^{n+1}
$$

Now, to finish the proof it suffices to find c such that $\frac{1}{2}+\frac{1}{c} \leq 1$. And this is equivalent with the condition that $c \geq 2$.
4.4.19 There is another way how to deal with finding an asymptotic growth of functions of the type

$$
\sum_{i=1}^{n} f(i)
$$

We show it only for non decreasing functions $f(n)$ (for non increasing you have to change the inequalities):

$$
\int_{0}^{n} f(x) d x \leq \sum_{i=1}^{n} f(i) \leq \int_{1}^{n+1} f(x) d x
$$

If the integral is improper, it is useful to look for an estimate for $\sum_{i=2}^{n} f(i)$ only.

