Week 1 Sets

Discrete Math

Marie Demlová
http://math.fel.cvut.cz/en/people/demlova

February 17, 2022

Introduction

Tutorials

- Active participation at tutorials. Homeworks solved in groups - maximal gain 5 points.
- Midterm test during 9th week - maximal gain 15 points.

Exams

- Written test - 80 points.
- Success - at least 40 points from the written test, and the sum of points from homework, from the midterm and the written test must be at least 50 points.

All informations - Moodle

Sets

Examples of sets.

- $S=\{1,4,9,16\}$;
- $T=\left\{x \mid x=y^{2}, y \in \mathbb{N}, 0<y<5\right\}$;
- \mathbb{N} - the set of natural numbers;
- \mathbb{Z} - the set of integers;
- \mathbb{R} - the set of real numbers;
- $E=\{m \mid m=2 k, k \in \mathbb{N}\}$ - the set of even natural numbers;
- $O=\{m \mid m=2 k+1, k \in \mathbb{N}\}$ - the set of odd natural numbers.

Two sets S and T are equal (we write $S=T$) if every element of the set S is an element of the set T and conversely, every element of T is an element of S.

Subsets

Given two sets S and $T ; S$ is a subset of T if every element of the set S is also an element of T, we write $S \subseteq T$.
T is not a subset of S if and only if there is an element x for which $x \in T$ and $x \notin S$.

Proposition.

For all sets S, T we have $S=T$ if and only if $S \subseteq T$ and $T \subseteq S$.
The empty set is a set that contains no element; is denoted \emptyset.
Fact.
$\emptyset \subseteq A$ for every set A.

Set Operations

Given two sets A and B

- Union A and B is the set $A \cup B=\{x \mid x \in A$ or $x \in B\}$;
- Intersection A and B is the set $A \cap B=\{x \mid x \in A$ and $x \in B\} ;$
- Difference of two sets A and B (in this order) is the set $A \backslash B=\{x \mid x \in A$ and $x \notin B\}$;
- Difference between an universal set U and A is the complement of A denoted by \bar{A};
- Cartesian product of A and B (we denote it by $A \times B$) is $A \times B=\{(a, b) \mid a \in A, b \in B\}$.
- If $A=B$ then $A \times A$ is an Cartesian power of the set A and we write A^{2} instead of $A \times A, A^{3}$ is the set of all triples of elements of A, etc.

Set Operations

If $A \cap B=\emptyset$, we say that the sets A and B are disjoint sets.
Let A be a set. The power set $P(A)$ of the set A is the set of all subsets of the set A.

Examples.

$P(\emptyset)=\{\emptyset\}$, and $P(\{1,2,3\})=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\}$, $\{2,3\},\{1,2,3\}\}$.

Fact. The power set $P(A)$ of any set A is nonempty.

Set Operations

Characteristic function of a subset.
A characteristic function χ_{A} of a subset $A \subseteq U$ is the mapping $\chi_{A}: U \rightarrow\{0,1\}$ defined by

$$
\chi_{A}(x)= \begin{cases}1 & \text { for } x \in A ; \\ 0 & \text { for } x \in U \backslash A .\end{cases}
$$

Fact. There is one-to-one correspondence between subsets of U and characteristic functions, i.e. mappings $U \rightarrow\{0,1\}$.

If U has n elements then there are 2^{n} its subsets.

Cardinality of Sets

A mapping $f: A \rightarrow B$ is

- injective (or one-to-one) if for every two different elements $x, y \in A$ their images $f(x), f(y)$ are also different.
- surjective (or onto) if for every element $y \in B$ there exists an element $x \in A$ such that $y=f(x)$.
- a bijection if it is injective and surjective.

Sets A and B have the same cardinality if there is a bijection from A onto B. This fact is denoted by $|A|=|B|$.

Examples
$|\mathbb{N}|=|E|,|\mathbb{N}|=|O|, E$ is the set of even natural numbers, O is the set of odd natural numbers.

Countable sets

A set A is countable provided it has the same cardinality as the set of all natural numbers \mathbb{N}.

If a set A is infinite and not countable then it is uncountable.
Fact. A set A is countable if and only if it can be arranged in an injective infinite sequence, (i.e. a sequence which is infinite and where no two elements are equal).

Proposition.

- Any infinite subset of a countable set is again countable.
- If two sets are countable so is their union.
- The Cartesian product of two countable sets is a countable set.
- The union of a countable system of finite disjoint sets is again countable.

Countable sets

Examples.

- The set \mathbb{Z} of all integers is countable.
- The set \mathbb{Q} of all rational numbers is countable.
- The set of all polynomials with integer coefficients is countable.
- The set of all binary words is countable.
- The set of all rational numbers $x, 0<x<1$ is countable.

Uncountable sets

Cantor Diagonal Method.

Theorem.
The set of all infinite sequences of 0's and 1's is uncountable.
Corollary.
The set of all subsets of natural numbers \mathbb{N}, i.e. $P(\mathbb{N})$, is uncountable.

