Week 3 Relations Discrete Math

Marie Demlová http://math.fel.cvut.cz/en/people/demlova

March 3, 2022

M. Demlova: Discrete Math

A relation R on A is a partial order if it is reflexive, antisymmetric and transitive. A set A together with a partial order is a poset.

Examples.

- \triangleright \mathbb{R} with \leq , an ordinary ordering, is a poset.
- P(U) with \subseteq , "to be a subset", is a poset.
- N with the relation of divisibility defined by m | n iff m is a divisor of n (i.e. if n = k ⋅ m for some k ∈ N) is a poset.

Proposition.

If \sqsubseteq is a partial order on a set A, then so is a restriction of \sqsubseteq on any subset $B \subseteq A$.

Hasse diagram of a poset.

Let (A, \sqsubseteq) is a poset for a finite set A. The covering relation \prec is a subrelation of \sqsubseteq defined by

 $a \prec b$ if and only if $a \neq b$ and if $a \sqsubseteq c \sqsubseteq b$ then a = c or b = c.

The Hasse diagram contains points for all $a \in A$, representing the covering relation where elements smaller are drawn lower than the bigger ones.

Smallest element, greatest element.

Given a poset (A, \sqsubseteq) .

- ▶ $a \in A$ is the smallest element if for every $b \in A$ we have $a \sqsubseteq b$.
- ▶ $a \in A$ is the greatest element if for every $b \in A$ we have $b \sqsubseteq a$.

Minimal elements, maximal elements.

Given a poset (A, \sqsubseteq) .

- ▶ $a \in A$ is a minimal element if for every $b \in A$ we have if $b \sqsubseteq a$ then b = a.
- We say that a ∈ A is a maximal element if for every b ∈ A we have if a ⊑ b then b = a.

Facts. Given a poset (A, \sqsubseteq) .

- If it has the smallest element, then it is the only minimal element.
- A poset can have more than one minimal but i this case it does not have the smallest element.
- A poset can have no minimal element.
- Any post (A, ⊑) with a finite set A has at least one minimal and at least one maximal element.

Analogously for the greatest element and maximal elements

Linear order, comparable and incomparable elements.

Given a poset (A, \sqsubseteq) and $a, b \in A$. Then a, b are comparable if $a \sqsubseteq b$ or $b \sqsubseteq a$. Otherwise, they are called incomparable.

A partial order on A is a linear order if any two elements of A are comparable.

Well-ordering

A partial order \sqsubseteq on A is called well-ordering if any non-empty subset $M \subseteq A$ has the smallest element.

Well-ordering Principle.

Let $\mathbb N$ be the set of all natural numbers. Then the ordinary relation \leq "to be smaller or equal to" on $\mathbb N$ is a well-ordering.

Well-ordering Principle cannot be either proved or disproved.

Mathematical Induction

Weak form od mathematical induction

Given a property V(n) of natural numbers. Assume that

- 1. $V(n_0)$ is true;
- 2. if V(n) holds then V(n+1) holds as well.

Then V(n) is true for any $n \ge n_0$.

Mathematical Induction

Example 1.

Prove using the mathematical induction that for any set U with n elements the set $\mathcal{P}(U)$ has 2^n elements (for any $n \ge 0$).

Example 2.

Derive a formula $\sum_{i=0}^{n} i^2$.

M. Demlova: Discrete Math

Partial order Mathematical Induction

Mathematical Induction

Theorem

The principle of mathematical induction follows from the well-ordering principle.

M. Demlova: Discrete Math