Week 4 Mathematical Induction Discrete Math

Marie Demlová http://math.fel.cvut.cz/en/people/demlova

March 10, 2022

Well-ordering.

A partial order \sqsubseteq on A is called well-ordering if any non-empty subset $M \subseteq$ has the smallest element.

Well-ordering Principle.

Let $\mathbb N$ be the set of all natural numbers. Then the ordinary relation \leq "to be smaller or equal to" is a well-ordering.

Weak form of mathematical induction.

Given a property V(n) of natural numbers. Assume that

1. $V(n_0)$ is true;

2. if V(n) holds for $n \ge n_0$ then V(n+1) holds as well. Then V(n) is true for any $n \ge n_0$.

Strong form.

Given a property V(n) of natural numbers. Assume that

- 1. $V(n_0)$ is true;
- 2'. if V(k) holds for every $n_0 \le k < n$ then V(n) holds as well.
- Then V(n) is true for any $n \ge n_0$.

Example 2.

Prove by strong mathematical induction the following statement: Every natural number $n \ge 2$ is a product of one or more primes. Mathematical Induction Integers

Mathematical Induction

Theorem.

The weak and the strong mathematical induction are equivalent.

Theorem.

The well-ordering principle follows from the strong version of mathematical induction.

Mathematical Induction Integers

Mathematical Induction

Example 3. Hanoi Towers

Example 4.

Tiling Problem.

A right tromino is a figure consisting in three squares of the same size arranged to a right angle. A deficient board of 2^{2n} squares is a square with one square missing.

Is it possible to cover a deficient boar by trominos for every $n \ge 1$.

Example 5.

Egyptian form of a rational number between 0 and 1 $% \left({{{\mathbf{T}}_{{\mathbf{T}}}}_{{\mathbf{T}}}} \right)$

Given a natural number $\frac{p}{q}$, where $0 < \frac{p}{q} < 1$, then there are natural numbers r_1, r_2, \ldots, r_k , $r_i \neq r_j$ for $i \neq j$, such that

$$\frac{p}{q} = \frac{1}{r_1} + \frac{1}{r_2} + \ldots + \frac{1}{r_k}$$

Structural induction.

Mathematical induction is used also for constructing sets. Then proving properties of elements of the set us usually done by mathematical induction which is then called *structural induction*.

Example 6.

Let A be a set of binary words defined inductively by:

- ▶ $0 \in A$ and $1 \in A$.
- If $w \in A$ then $0w0 \in A$ and $1w1 \in A$.

Prove that A consists of all binary words of odd length which are palindromes (i.e. words w that are the same as its reverse).