> Week 5 Integers Discrete Math

Marie Demlová http://math.fel.cvut.cz/en/people/demlova

March 17, 2022

The Greatest Common Divisor Euclid's Algorithm Extended Euclid's Algorithm

Integers

Division Theorem. Let a, b, b > 0, be two integers. Then there exist unique integers q, r such that

$$a = q b + r, \quad 0 \le r < b.$$

The number q is called the quotient, and r the remainder when we divide a by b.

The division theorem holds also for negative numbers. For example, let a = -7, b = 3. Then $7 = 2 \cdot 3 + 1$, hence $-7 = -2 \cdot 3 - 1 = -3 \cdot 3 + (3 - 1)$. Therefore, q = -3 and r = 2.

Given two integers a, b. We say that b divides a if a = k b for some integer k. (Also a is a *multiple* of b.) This fact is denoted by b | a.

The Greatest Common Divisor Euclid's Algorithm Extended Euclid's Algorithm

The Greatest Common Divisor

A positive integer p, p > 1, is a prime if $a \mid p, a \ge 0$, implies a = 1 or a = p. A number n > 1 is composite if it is not a prime.

Let a and b be two integers. A common divisor of a and b is any integer e for which $e \mid a$ and $e \mid b$.

The greatest common divisor of *a*, *b* is the integer c = gcd(a, b) such that

► c ≥ 0

• c is a common divisor of a and b, i.e. $c \mid a$ and $c \mid b$,

• and if e is any common divisor of a and b then $e \mid c$. Integers a and b are called relatively prime (or coprime) if gcd(a, b) = 1.

The Greatest Common Divisor Euclid's Algorithm Extended Euclid's Algorithm

Euclid's Algorithm

Euclid's Algorithm

Input: Positive natural numbers a and b**Output**: c = gcd(a, b).

- 1. (Initialization.) u := a, t := b:
- 2. (Divide u by t.) repeat do $u = q \cdot t + r;$ u := t, t := r.until t = 0.3. (The greatest common divisor) return c := u.

The Greatest Common Divisor Euclid's Algorithm Extended Euclid's Algorithm

Euclid's Algorithm

Proposition.

The pairs of numbers u, t and t, r from the Euclid's algorithm have the same common divisors. Hence

$$gcd(u, t) = gcd(t, r) = gcd(a, b).$$

Bezout's Theorem.

Let a and b be two natural numbers. Denote c = gcd(a, b). Then there exist integers x, y such that

$$ax + by = c$$
.

The Greatest Common Divisor Euclid's Algorithm Extended Euclid's Algorithm

Extended Euclid's Algorithm

Input: natural numbers *a* and *b*.

Output: c = gcd(a, b) and $x, y \in \mathbb{Z}$ for which ax + by = c.

1. (Initialization.) $u := a, x_u := 1, y_u := 0, t := b, x_t := 0, y_t := 1;$ 2. (Division.) repeat do $u = q \cdot t + r, x_r := x_u - q x_t, y_r := y_u - q y_t;$ $u := t, x_u := x_t, y_u := y_t$ $t := r, x_t := x_r, y_t := y_r.$ until t = 03. (Greatest common divisor and x, y) return $c := u, x := x_u, y := y_u.$

The Greatest Common Divisor Euclid's Algorithm Extended Euclid's Algorithm

Integers

Corollary of Bezout's theorem.

- Let a and b be two relatively prime numbers. If a divides a product $b \cdot c$ then a divides c.
- If a prime number p divides a product a · b then it divides at least one of the numbers a, b.

Prime Factorization Theorem.

Every natural number n, n > 1, factors into a product of primes, i.e.

$$n=p_1^{i_1}\cdot p_2^{i_2}\cdot\ldots\cdot p_k^{i_k},$$

where p_1, \ldots, p_k are distinct primes, and i_1, \ldots, i_k positive natural numbers.

If moreover $p_1 < p_2 < \ldots < p_k$ then the factorization is unique.

The Greatest Common Divisor Euclid's Algorithm Extended Euclid's Algorithm

Integers

Theorem.

There are infinitely (countably) many primes.

Proposition.

Equation ax + by = c for integers a, b, c has at least one integer solution if and only if c is divisible by the greatest common divisor of a and b.

Diophantic Equations.

By a Diophantic equation we mean equation

$$ax + by = c$$
, $a, b, c \in \mathbb{Z}$,

where we are looking only for integers solutions, i.e. $x, y \in \mathbb{Z}$.

Homogeneous Diophantic equation.

A Diophantic equation is homogeneous if the right hand side is 0, i.e. c = 0.

Proposition.

If $a \neq 0 \neq b$ then the equation ax + by = 0 has infinitely many solutions, more precisely, $x = -k \cdot b_1$, $y = k \cdot a_1$ for any $k \in \mathbb{Z}$, where $a_1 = \frac{a}{\gcd(a,b)}$ and $b_1 = \frac{b}{\gcd(a,b)}$ are all integer solutions of it.

Diophantic Equations.

Proposition.

If c is a multiple of gcd(a, b) then any solution of ax + by = c is of the form

$$x = x_0 + k \cdot b_1, \ y = y_0 - k \cdot a_1,$$

where x_0, y_0 is a solution of the equation ax + by = c, and $a_1 = \frac{a}{\gcd(a,b)}$, $b_1 = \frac{b}{\gcd(a,b)}$ and $k \in \mathbb{Z}$.

Diophantic Equations.

A Procedure for Solving Diophantic Equations.

- Using the extended Euclid's algorithm we find integers x₀ and y₀ satisfying ax + by = c or find out that the equation does not have a solution.
- If there is at least one integer solution of ax + by = c we find a general integer solution of the equation ax + by = 0 as follows.

First, we divide the equation by gcd(a, b) and obtain an equation $a_1 x + b_1 y = 0$ where a_1 and b_1 are relatively prime. The general solution is now $x = b_1 k$, $y = -a_1 k$ where $k \in \mathbb{Z}$.

• The general solution of ax + by = c is

$$x=x_0+b_1\,k,\ y=y_0-a_1\,k,\quad k\in\mathbb{Z}.$$