Week 5
 Integers

 Discrete Math

 Discrete Math}

Marie Demlová
http://math.fel.cvut.cz/en/people/demlova

March 17, 2022

Integers

Division Theorem. Let $a, b, b>0$, be two integers. Then there exist unique integers q, r such that

$$
a=q b+r, \quad 0 \leq r<b .
$$

The number q is called the quotient, and r the remainder when we divide a by b.

The division theorem holds also for negative numbers. For example, let $a=-7, b=3$. Then $7=2 \cdot 3+1$, hence $-7=-2 \cdot 3-1=-3 \cdot 3+(3-1)$. Therefore, $q=-3$ and $r=2$.
Given two integers a, b. We say that b divides a if $a=k b$ for some integer k. (Also a is a multiple of b.) This fact is denoted by $b \mid a$.

The Greatest Common Divisor

A positive integer $p, p>1$, is a prime if
$a \mid p, a \geq 0, \quad$ implies $a=1$ or $a=p$.
A number $n>1$ is composite if it is not a prime.
Let a and b be two integers. A common divisor of a and b is any integer e for which $e \mid a$ and $e \mid b$.
The greatest common divisor of a, b is the integer $c=\operatorname{gcd}(a, b)$ such that

- $c \geq 0$
- c is a common divisor of a and b, i.e. $c \mid a$ and $c \mid b$,
- and if e is any common divisor of a and b then $e \mid c$. Integers a and b are called relatively prime (or coprime) if $\operatorname{gcd}(a, b)=1$.

Euclid's Algorithm

Euclid's Algorithm

Input: Positive natural numbers a and b
Output: $c=\operatorname{gcd}(a, b)$.

1. (Initialization.)
$u:=a, t:=b$;
2. (Divide u by t.) repeat

$$
\text { do } u=q \cdot t+r
$$

$$
u:=t, t:=r .
$$

until $t=0$.
3. (The greatest common divisor) return $c:=u$.

Euclid's Algorithm

Proposition.

The pairs of numbers u, t and t, r from the Euclid's algorithm have the same common divisors. Hence

$$
\operatorname{gcd}(u, t)=\operatorname{gcd}(t, r)=\operatorname{gcd}(a, b)
$$

Bezout's Theorem.

Let a and b be two natural numbers. Denote $c=\operatorname{gcd}(a, b)$. Then there exist integers x, y such that

$$
a x+b y=c
$$

Extended Euclid's Algorithm

Input: natural numbers a and b.
Output: $c=\operatorname{gcd}(a, b)$ and $x, y \in \mathbb{Z}$ for which $a x+b y=c$.

1. (Initialization.)

$$
u:=a, x_{u}:=1, y_{u}:=0, t:=b, x_{t}:=0, y_{t}:=1
$$

2. (Division.)
repeat

$$
\begin{aligned}
& \text { do } u=q \cdot t+r, x_{r}:=x_{u}-q x_{t}, y_{r}:=y_{u}-q y_{t} \\
& \quad u:=t, x_{u}:=x_{t}, y_{u}:=y_{t} \\
& \quad t:=r, x_{t}:=x_{r}, y_{t}:=y_{r}
\end{aligned}
$$

until $t=0$
3. (Greatest common divisor and x, y)
return $c:=u, x:=x_{u}, y:=y_{u}$.

Integers

Corollary of Bezout's theorem.

- Let a and b be two relatively prime numbers. If a divides a product $b \cdot c$ then a divides c.
- If a prime number p divides a product $a \cdot b$ then it divides at least one of the numbers a, b.

Prime Factorization Theorem.

Every natural number $n, n>1$, factors into a product of primes, i.e.

$$
n=p_{1}^{i_{1}} \cdot p_{2}^{i_{2}} \cdot \ldots \cdot p_{k}^{i_{k}},
$$

where p_{1}, \ldots, p_{k} are distinct primes, and i_{1}, \ldots, i_{k} positive natural numbers.
If moreover $p_{1}<p_{2}<\ldots<p_{k}$ then the factorization is unique.

Integers

Theorem.

There are infinitely (countably) many primes.

Proposition.

Equation $a x+b y=c$ for integers a, b, c has at least one integer solution if and only if c is divisible by the greatest common divisor of a and b.

Diophantic Equations.

By a Diophantic equation we mean equation

$$
a x+b y=c, \quad a, b, c \in \mathbb{Z}
$$

where we are looking only for integers solutions, i.e. $x, y \in \mathbb{Z}$.
Homogeneous Diophantic equation.
A Diophantic equation is homogeneous if the right hand side is 0 , i.e. $c=0$.

Proposition.

If $a \neq 0 \neq b$ then the equation $a x+b y=0$ has infinitely many solutions, more precisely, $x=-k \cdot b_{1}, y=k \cdot a_{1}$ for any $k \in \mathbb{Z}$, where $a_{1}=\frac{a}{\operatorname{gcd}(a, b)}$ and $b_{1}=\frac{b}{\operatorname{gcd}(a, b)}$ are all integer solutions of it.

Diophantic Equations.

Proposition.

If c is a multiple of $\operatorname{gcd}(a, b)$ then any solution of $a x+b y=c$ is of the form

$$
x=x_{0}+k \cdot b_{1}, \quad y=y_{0}-k \cdot a_{1},
$$

where x_{0}, y_{0} is a solution of the equation $a x+b y=c$, and $a_{1}=\frac{a}{\operatorname{gcd}(a, b)}, b_{1}=\frac{b}{\operatorname{gcd}(a, b)}$ and $k \in \mathbb{Z}$.

Diophantic Equations.

A Procedure for Solving Diophantic Equations.

- Using the extended Euclid's algorithm we find integers x_{0} and y_{0} satisfying $a x+b y=c$ or find out that the equation does not have a solution.
- If there is at least one integer solution of $a x+b y=c$ we find a general integer solution of the equation $a x+b y=0$ as follows.
First, we divide the equation by $\operatorname{gcd}(a, b)$ and obtain an equation $a_{1} x+b_{1} y=0$ where a_{1} and b_{1} are relatively prime. The general solution is now $x=b_{1} k, y=-a_{1} k$ where $k \in \mathbb{Z}$.
- The general solution of $a x+b y=c$ is

$$
x=x_{0}+b_{1} k, \quad y=y_{0}-a_{1} k, \quad k \in \mathbb{Z}
$$

