Week 6 Congruence Relation Modulo *n* Discrete Math

Marie Demlová http://math.fel.cvut.cz/en/people/demlova

March 24, 2022

Given two integers a, b and a natural number n > 1. We say that a is congruent to b modulo n and write $a \equiv b \pmod{n}$ if a - b is divisible by n.

Equivalent Characterizations of Modulo n.

Let a and b be two integers. Then the following is equivalent:

•
$$a \equiv b \pmod{n}$$
,

•
$$a = b + k n$$
 for some integer k ,

▶ a and b have the same remainders when divided by n.

Proposition.

Let a, b, and c be integers. Then

- $a \equiv a \pmod{n} \pmod{n}$ (modulo *n* is reflexive);
- if a ≡ b (mod n), then also b ≡ a (mod n) (modulo n is symmetric);
- if a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n) (modulo n is transitive).

Properties of modulo n.

Assume that for integers a, b, c, and d it holds that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then

$$(a+c)\equiv (b+d) \pmod{n}$$
 a $(a\cdot c)\equiv (b\cdot d) \pmod{n}.$

Corollary. Given two integers *a*, *b* such that $a \equiv b \pmod{n}$. Then

- $ra \equiv rb \pmod{n}$ for every integer r;
- $a^k \equiv b^k \pmod{n}$ for every natural number k.
- Moreover, if a_i ≡ b_i (mod n) for every i = 0,..., k, a r₀,..., r_k are arbitrary integers, then

$$(r_0 a_0 + \ldots + r_k a_k) \equiv (r_0 b_0 + \ldots + r_k b_k) \pmod{n}.$$

Proposition. Let *r*, *a*, *b* be integers and *n* a natural number n > 1 such that $ra \equiv rb \pmod{n}$. Then

$$a \equiv b\left(\mathrm{mod}rac{n}{\mathrm{gcd}(n,r)}
ight).$$

Solving $(a + x) \equiv b \pmod{n}$. Given integers *a*, *b* and a natural number n > 1. Find all integers *x* for which

$$(a+x)\equiv b \pmod{n}.$$

This problem has got always a solution which is any $x \in \mathbb{Z}$ for which $x \equiv (b - a) \pmod{n}$.

Solving $(a \cdot x) \equiv b \pmod{n}$. Given two integers *a*, *b* and a natural number n > 1. Find all integers *x* for which

 $a x \equiv b \pmod{n}$.

The equation above has a solution iff the number b is a multiple of gcd(a, n), and all integers x are solutions of the following Diophantic equation

$$ax + ny = b.$$

Proposition. Let n > 1, m > 1 be two relatively prime natural number. And let for some $a, b \in \mathbb{Z}$ it holds that $a \equiv b \pmod{n}$ and $a \equiv b \pmod{m}$. Then also $a \equiv b \pmod{nm}$.

A stronger version holds: Assume that $a \equiv b \pmod{n}$ and $a \equiv b \pmod{m}$. Let $n_1 = \frac{n}{\gcd(n,m)}$ and $m_1 = \frac{m}{\gcd(n,m)}$. Then $a \equiv b \pmod{n_1 m_1}$.

Small Fermat Theorem.

Let p be a prime and a an integer relatively prime to p. Then

$$a^{p-1} \equiv 1 \pmod{p}.$$

Operations in \mathbb{Z}_n

Residue Classes Modulo n

An equivalence class of the equivalence modulo n containing a number $i \in \mathbb{Z}$ is the residue class containing i and is denoted by $[i]_n$. We have

$$[i]_n = \{j \mid j = i + kn \text{ for some } k \in \mathbb{Z}\}.$$

The Set \mathbb{Z}_n .

There are *n* distinct residue classes modulo *n*; indeed, they are the residue classes corresponding to the numbers (remainders) $0, 1, \ldots, n-1$. The set of all residue classes is denoted by \mathbb{Z}_n , so

$$\mathbb{Z}_n = \{[0]_n, [1]_n, \dots, [n-1]_n\}.$$

Operations in \mathbb{Z}_n

Operations in \mathbb{Z}_n

Addition \oplus and multiplication $\odot.$

For $[i]_n, [j]_n \in \mathbb{Z}_n$ we have

$$[i]_n \oplus [j]_n = [i+j]_n, \qquad [i]_n \odot [j]_n = [i \cdot j]_n.$$

Example. Let n = 6, then there are 6 distinct residue classes, i.e.

$$\mathbb{Z}_6 = \{[0]_6, [1]_6, \dots, [5]_6\}.$$

Moreover,

$$[3]_6 \oplus [5]_6 = [2]_6, \ [3]_6 \odot [4]_6 = [0]_6.$$