Week 6
 Congruence Relation Modulo n

 Discrete Math

 Discrete Math}

Marie Demlová
http://math.fel.cvut.cz/en/people/demlova

March 24, 2022

Congruence Relation Modulo n

Given two integers a, b and a natural number $n>1$. We say that a is congruent to b modulo n and write $a \equiv b(\bmod n)$ if $a-b$ is divisible by n.

Equivalent Characterizations of Modulo n.

Let a and b be two integers. Then the following is equivalent:

- $a \equiv b(\bmod n)$,
- $a=b+k n$ for some integer k,
- a and b have the same remainders when divided by n.

Congruence Relation Modulo n

Proposition.

Let a, b, and c be integers. Then

- $a \equiv a(\bmod n)$ (modulo n is reflexive);
- if $a \equiv b(\bmod n)$, then also $b \equiv a(\bmod n)(\operatorname{modulo} n$ is symmetric);
- if $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n)$, then $a \equiv c(\bmod n)$ (modulo n is transitive).

Properties of modulo n.

Assume that for integers a, b, c, and d it holds that $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$. Then

$$
(a+c) \equiv(b+d)(\bmod n) \quad \text { a }(a \cdot c) \equiv(b \cdot d)(\bmod n)
$$

Congruence Relation Modulo n

Corollary. Given two integers a, b such that $a \equiv b(\bmod n)$. Then

- $r a \equiv r b(\bmod n)$ for every integer r;
- $a^{k} \equiv b^{k}(\bmod n)$ for every natural number k.
- Moreover, if $a_{i} \equiv b_{i}(\bmod n)$ for every $i=0, \ldots, k, a$ r_{0}, \ldots, r_{k} are arbitrary integers, then

$$
\left(r_{0} a_{0}+\ldots+r_{k} a_{k}\right) \equiv\left(r_{0} b_{0}+\ldots+r_{k} b_{k}\right)(\bmod n)
$$

Proposition. Let r, a, b be integers and n a natural number $n>1$ such that $r a \equiv r b(\bmod n)$. Then

$$
a \equiv b\left(\bmod \frac{n}{\operatorname{gcd}(n, r)}\right) .
$$

Congruence Relation Modulo n

Solving $(a+x) \equiv b(\bmod n)$. Given integers a, b and a natural number $n>1$. Find all integers x for which

$$
(a+x) \equiv b(\bmod n)
$$

This problem has got always a solution which is any $x \in \mathbb{Z}$ for which $x \equiv(b-a)(\bmod n)$.

Solving $(a \cdot x) \equiv b(\bmod n)$. Given two integers a, b and a natural number $n>1$. Find all integers x for which

$$
a x \equiv b(\bmod n)
$$

The equation above has a solution iff the number b is a multiple of $\operatorname{gcd}(a, n)$, and all integers x are solutions of the following Diophantic equation

$$
a x+n y=b
$$

Congruence Relation Modulo n

Proposition. Let $n>1, m>1$ be two relatively prime natural number. And let for some $a, b \in \mathbb{Z}$ it holds that $a \equiv b(\bmod n)$ and $a \equiv b(\bmod m)$
Then also $a \equiv b(\bmod n m)$.
A stronger version holds: Assume that $a \equiv b(\bmod n)$ and $a \equiv b(\bmod m)$. Let $n_{1}=\frac{n}{\operatorname{gcd}(n, m)}$ and $m_{1}=\frac{m}{\operatorname{gcd}(n, m)}$. Then

$$
a \equiv b\left(\bmod n_{1} m_{1}\right)
$$

Small Fermat Theorem.

Let p be a prime and a an integer relatively prime to p. Then

$$
a^{p-1} \equiv 1(\bmod p) .
$$

Residue Classes Modulo n

An equivalence class of the equivalence modulo n containing a number $i \in \mathbb{Z}$ is the residue class containing i and is denoted by $[i]_{n}$. We have

$$
[i]_{n}=\{j \mid j=i+k n \text { for some } k \in \mathbb{Z}\} .
$$

The Set \mathbb{Z}_{n}.

There are n distinct residue classes modulo n; indeed, they are the residue classes corresponding to the numbers (remainders) $0,1, \ldots, n-1$. The set of all residue classes is denoted by \mathbb{Z}_{n}, so

$$
\mathbb{Z}_{n}=\left\{[0]_{n},[1]_{n}, \ldots,[n-1]_{n}\right\} .
$$

Operations in \mathbb{Z}_{n}

Addition \oplus and multiplication \odot.

For $[i]_{n},[j]_{n} \in \mathbb{Z}_{n}$ we have

$$
[i]_{n} \oplus[j]_{n}=[i+j]_{n}, \quad[i]_{n} \odot[j]_{n}=[i \cdot j]_{n} .
$$

Example. Let $n=6$, then there are 6 distinct residue classes, i.e.

$$
\mathbb{Z}_{6}=\left\{[0]_{6},[1]_{6}, \ldots,[5]_{6}\right\} .
$$

Moreover,

$$
[3]_{6} \oplus[5]_{6}=[2]_{6}, \quad[3]_{6} \odot[4]_{6}=[0]_{6} .
$$

