> Week 7 Binary Operations Discrete Math

Marie Demlová http://math.fel.cvut.cz/en/people/demlova

March 31, 2022

Residue Classes Modulo n

Properties of \oplus .

 \blacktriangleright \oplus is associative, i.e. for any three integers *i*, *j*, *k* we have:

$$([i]_n \oplus [j]_n) \oplus [k]_n = [i]_n \oplus ([j]_n \oplus [k]_n).$$

 \blacktriangleright \oplus is commutative, i.e. for any two integers *i*, *j* we have:

$$[i]_n \oplus [j]_n = [j]_n \oplus [i]_n.$$

The class [0]_n plays the role of "zero", more precisely, for any integer i we have:

$$[0]_n\oplus [i]_n=[i]_n.$$

We can "subtract", more precisely for any integer [i]_n there exists class -[i]_n such that

$$[i]_n\oplus(-[i]_n)=[0]_n.$$

Residue Classes Modulo n

Properties of the Operation \odot .

 \blacktriangleright \odot is associative, i.e for any three integers i, j, k we have:

$$([i]_n \odot [j]_n) \odot [k]_n = [i]_n \odot ([j]_n \odot [k]_n).$$

 \blacktriangleright \odot is commutative, i.e. for any two integers *i*, *j* we have:

$$[i]_n \odot [j]_n = [j]_n \odot [i]_n.$$

The class [1]_n plays the role of "identity", More precisely, for any integer i we have:

$$[1]_n \odot [i]_n = [i]_n.$$

For a residue class $[i]_n$ there is a residue class $[x]_n$ such that

$$[i]_n \odot [x]_n = [1]_n$$

iff the numbers i and n are relatively prime.

Residue Classes Modulo n

Convention.

Later on we will write $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$ instead of $\mathbb{Z}_n = \{[0]_n, [1]_n, \dots, [n-1]_n\}$ and the operations \oplus , \odot will be denoted by an "ordinary signs", i.e. simply by + and \cdot .

Note that we can write that in \mathbb{Z}_n for every $i, j \in \mathbb{Z}_n$

i + j = k, where k is the remainder when i + j is divided by n;

 $i \cdot j = l$, where *l* is the remainder when i j is divided by *n*.

RSA cryptosystem

Alice and Bob want to exchange messages - numbers.

Alice:

- chooses two big prime numbers p and q and their product N = p · q;
- chooses a number e_A coprime to $\phi(N) = (p-1)(q-1)$;
- \blacktriangleright computes d_A for which

$$d_A \cdot e_A \equiv 1 \pmod{\phi(N)}.$$

makes public: N, and e_A.

Secret: *p*, *q*,
$$\phi(N)$$
, and d_A .

RSA cryptosystem

Bob:

• wants to send a message x, a number 0 < x < N.

• He computes y, 0 < y < N such that

$$x^{e_A} \equiv y \pmod{N}$$
,

sends y to Alice.

Alice receives y, computes z, 0 < z < N for which

$$y^{d_A} \equiv z \pmod{N}.$$

Fact.

It holds that z = x. is the message went by Bob.

Groupoids, Semigroups, Monoids

A binary operation on a set S is any mapping from the set of all pairs $S \times S$ into the set S.

A pair (S, \circ) where S is a set and \circ is a binary operation on S is a groupoid.

Examples of groupoids.

- 1) $(\mathbb{R}, +)$ where + is addition on the set of all real numbers.
- 3) $(\mathbb{N},+)$ where + is addition on the set of all natural numbers.
- 4) (\mathbb{R}, \cdot) where \cdot is multiplication on the set of all real numbers.
- 6) (M_n, \cdot) where M_n is the set of all square matrices of order n, and \cdot is multiplication of matrices.
- 7) (\mathbb{Z}_n, \oplus) for any n > 1.
- 8) (\mathbb{Z}_n, \odot) for any n > 1.
- 9) $(\mathbb{Z}, -)$, where is subtraction on the set of all integers.

Groupoids, Semigroups, Monoids

Examples which are not groupoids.

- (N, -) is not a groupoid because subtraction is not a binary operation on N. Indeed, 3 4 is not a natural number.
- $(\mathbb{Q},:)$, where : is the division, because 1 : 0 is not defined.

Semigroups.

A groupoid (S, \circ) is a semigroup if for every $x, y, z \in S$ we have

$$x \circ (y \circ z) = (x \circ y) \circ z$$

The above law is called associative law.

The associative law allows to write $a_1 \circ a_2 \circ a_3$ for $(a_1 \circ a_2) \circ a_3$ or $a_1 \circ (a_2 \circ a_3)$.

Similarly, we write

$$a_1 \circ a_2 \circ \ldots \circ a_n$$

independently on the brackets.

Groupoids, Semigroups, Monoids

Examples of semigroups.

- 1) $(\mathbb{R},+)$, $(\mathbb{Z},+)$, $(\mathbb{N},+)$.
- 2) (\mathbb{R}, \cdot) , (\mathbb{Z}, \cdot) , (\mathbb{N}, \cdot) .
- 3) (\mathbb{Z}_n,\oplus) , (\mathbb{Z}_n,\odot) .
- (M_n, +), (M_n, ·), where M_n is the set of square real matrices of order n and + and · is addition and multiplication, respectively, of matrices.
- 5) (A, \circ) where A is the set of all mappings $f: X \to X$ for a set X, and \circ is the composition of mappings.

Examples of groupoids which are not semigroups.

(Z, -), i.e. the set of all integers with subtraction. Indeed, 2 - (3 - 4) = 3 but (2 - 3) - 4 = -5.
(ℝ \ {0}, :), i.e. the set of non-zero real numbers together with the division :. Indeed, 4 : (2 : 4) = 8, but (4 : 2) : 4 = ¹/₂.

Groupoids, Semigroups, Monoids

Neutral element. Given a groupoid (S, \circ) . An element $e \in S$ is a neutral (also *identity*) element if

 $e \circ x = x = x \circ e$ for every $x \in S$.

Examples of neutral elements.

- 1) For $(\mathbb{R}, +)$ the number 0 is its neutral element, the same holds for $(\mathbb{Z}, +)$.
- 2) For (\mathbb{R}, \cdot) the number 1 is its neutral (identity) element, the same holds for (\mathbb{Z}, \cdot) , and (\mathbb{N}, \cdot) .
- 3) For (M_n, \cdot) where \cdot is the multiplication of square matrices of order *n* the identity matrix is its neutral (identity) element.

4) (\mathbb{Z}_n, \oplus) has the class $[0]_n$ as its neutral element.

5) (\mathbb{Z}_n, \odot) has the class $[1]_n$ as its neutral (identity) element.

Groupoids, Semigroups, Monoids

Example of a groupoid that does not have a neutral element. The groupoid $(\mathbb{N} \setminus \{0\}, +)$. Indeed, there is not a positive number e for which n + e = n = e + n for every positive $n \in \mathbb{N}$

Proposition. Given a groupoid (S, \circ) . If there exist elements e and f such that for every $x \in S$ we have $e \circ x = x$ and $x \circ f = x$, then e = f is the neutral element of (S, \circ) .

Groupoids, Semigroups, Monoids

Monoid. If in a semigroup (S, \circ) there exists a neutral element then we call (S, \circ) a monoid.

The fact that (S, \circ) is a monoid with the neutral element e is shortened to (S, \circ, e) .

Powers in a monoid. Given a monoid (S, \circ, e) and its element $a \in S$. The powers of *a* are defined by:

$$a^0 = e$$
, $a^{i+1} = a^i \circ a$ for every $i \ge 0$.

Invertible element. Given a monoid (S, \circ, e) . An element $a \in S$ is invertible if there exists an element $y \in S$ such that

$$a \circ y = e = y \circ a.$$

Groupoids, Semigroups, Monoids

Proposition. Given a monoid (S, \circ, e) . If there are elements $a, x, y \in S$ such that

 $x \circ a = e$ and $a \circ y = e$,

then x = y.

Inverse element. Let (S, \circ, e) be a monoid, and $a \in S$ an invertible element. Let $y \in S$ satisfy

$$a \circ y = e = y \circ a.$$

Then y is the inverse element to a and is denoted by a^{-1} .

Groupoids, Semigroups, Monoids

Proposition.

Let (S, \circ, e) be a monoid. Then

- e is invertible and $e^{-1} = e$.
- If a is invertible then so is a^{-1} , and we have $(a^{-1})^{-1} = a$.
- If a and b are invertible elements then so is a ∘ b, and we have (a ∘ b)⁻¹ = b⁻¹ ∘ a⁻¹.

Cancellation by an inverse element.

Let (S,\circ,e) be a monoid, and let $a\in S$ is its invertible element. Then

$$a \circ b = a \circ c$$
, or $b \circ a = c \circ a$ implies $b = c$.

Groups

Groups. A monoid (S, \circ, e) in which every element is invertible is called a group.

Examples of groups.

- ▶ The monoid $(\mathbb{R}, +, 0)$. Indeed, for every $x \in \mathbb{R}$ there exists -x for which x + (-x) = 0 = (-x) + x.
- ► The monoid (Z, +, 0). Indeed, for each integer x there exists an integer -x for which x + (-x) = 0 = (-x) + x.
- ► The monoid (ℝ⁺, ·, 1), where ℝ⁺ is the set of all positive real numbers. Indeed, for every positive real number x there exists a positive real number ¹/_x for which x · ¹/_x = 1 = ¹/_x · x.
- The monoid (Z_n, ⊕, [0]_n). Indeed, for a class [i]_n there exists a class [n − i]_n for which [i]_n ⊕ [n − i]_n = [0]_n = [n − i]_n ⊕ [i]_n.

Groups

Examples.

- ► The monoid (Z, ·, 1) is not a group. Indeed, for example 2 is not invertible.
- The monoid (Z_n, ⊙, [1]_n) is not a group. Indeed, the class [0]_n is not invertible because for any [i]_n we have [0]_n ⊙ [i]_n = [0]_n ≠ [1]_n.
- Let A be the set of all permutation of {1,2,...,n}, and let ∘ be the composition. Then (A, ∘) is a group. Indeed, it is a monoid with the neutral element *id*; moreover, every permutation φ has its inverse permutation φ⁻¹.
- Let B be the set of all mappings from the set {1,2,...,n} into itself, where n > 1. Let ∘ be the composition. Then (B, ∘, id) is not a group; indeed, it is a monoid but any mapping that is not one-to-one is not invertible.

Groups

Proposition. Given a group (S, \circ) with its neutral element *e*. Then for every two elements $a, b \in S$ there exist unique $x, y \in S$ such that

$$a \circ x = b, \qquad y \circ a = b.$$

Theorem.

A semigroup (S, \circ) is a group if and only if every equation of the form $a \circ x = b$ and every equation of the form $y \circ a = b$ has at least one solution.

More precisely: A semigroup (S, \circ) is a group if and only if for every two elements $a, b \in S$ there exist $x, y \in S$ such that $a \circ x = b$ and $y \circ a = b$.

Commutative semigroups, monoids, groups.

A semigroup (S, \circ) (monoid, group) is called commutative if it satisfies the *commutative law*, i.e. for every two elements $x, y \in S$

 $x \circ y = y \circ x.$