Week 7

Binary Operations
 Discrete Math

Marie Demlová
http://math.fel.cvut.cz/en/people/demlova

March 31, 2022

Residue Classes Modulo n
Properties of \oplus.
\oplus is associative, i.e. for any three integers i, j, k we have:

$$
\left([i]_{n} \oplus[j]_{n}\right) \oplus[k]_{n}=[i]_{n} \oplus\left([j]_{n} \oplus[k]_{n}\right)
$$

\oplus is commutative, i.e. for any two integers i, j we have:

$$
[i]_{n} \oplus[j]_{n}=[j]_{n} \oplus[i]_{n}
$$

- The class $[0]_{n}$ plays the role of "zero", more precisely, for any integer i we have:

$$
[0]_{n} \oplus[i]_{n}=[i]_{n}
$$

- We can "subtract", more precisely for any integer $[i]_{n}$ there exists class $-[i]_{n}$ such that

$$
[i]_{n} \oplus\left(-[i]_{n}\right)=[0]_{n}
$$

Residue Classes Modulo n

Properties of the Operation \odot.

- \odot is associative, i.e for any three integers i, j, k we have:

$$
\left([i]_{n} \odot[j]_{n}\right) \odot[k]_{n}=[i]_{n} \odot\left([j]_{n} \odot[k]_{n}\right) .
$$

$-\odot$ is commutative, i.e. for any two integers i, j we have:

$$
[i]_{n} \odot[j]_{n}=[j]_{n} \odot[i]_{n} .
$$

- The class $[1]_{n}$ plays the role of "identity", More precisely, for any integer i we have:

$$
[1]_{n} \odot[i]_{n}=[i]_{n} .
$$

For a residue class $[i]_{n}$ there is a residue class $[x]_{n}$ such that

$$
[i]_{n} \odot[x]_{n}=[1]_{n}
$$

iff the numbers i and n are relatively prime.

Residue Classes Modulo n

Convention.

Later on we will write $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$ instead of $\mathbb{Z}_{n}=\left\{[0]_{n},[1]_{n}, \ldots,[n-1]_{n}\right\}$ and the operations \oplus, \odot will be denoted by an "ordinary signs", i.e. simply by + and \cdot.

Note that we can write that in \mathbb{Z}_{n} for every $i, j \in \mathbb{Z}_{n}$
$i+j=k$, where k is the remainder when $i+j$ is divided by n; $i \cdot j=l$, where l is the remainder when $i j$ is divided by n.

RSA cryptosystem

Alice and Bob want to exchange messages - numbers.

Alice:

- chooses two big prime numbers p and q and their product $N=p \cdot q ;$
- chooses a number e_{A} coprime to $\phi(N)=(p-1)(q-1)$;
- computes d_{A} for which

$$
d_{A} \cdot e_{A} \equiv 1(\bmod \phi(N)) .
$$

- makes public: N, and e_{A}.
- Secret: $p, q, \phi(N)$, and d_{A}.

RSA cryptosystem

Bob:

- wants to send a message x, a number $0<x<N$.
- He computes $y, 0<y<N$ such that

$$
x^{e_{A}} \equiv y(\bmod N),
$$

- sends y to Alice.

Alice receives y, computes $z, 0<z<N$ for which

$$
y^{d_{A}} \equiv z(\bmod N) .
$$

Fact.

It holds that $z=x$. is the message went by Bob.

Groupoids, Semigroups, Monoids

A binary operation on a set S is any mapping from the set of all pairs $S \times S$ into the set S.

A pair (S, \circ) where S is a set and \circ is a binary operation on S is a groupoid.

Examples of groupoids.

1) $(\mathbb{R},+)$ where + is addition on the set of all real numbers.
2) $(\mathbb{N},+)$ where + is addition on the set of all natural numbers.
3) ($\mathbb{R}, \cdot)$ where \cdot is multiplication on the set of all real numbers.
4) $\left(M_{n}, \cdot\right)$ where M_{n} is the set of all square matrices of order n, and \cdot is multiplication of matrices.
5) $\left(\mathbb{Z}_{n}, \oplus\right)$ for any $n>1$.
6) $\left(\mathbb{Z}_{n}, \odot\right)$ for any $n>1$.
7) $(\mathbb{Z},-)$, where - is subtraction on the set of all integers.

Groupoids, Semigroups, Monoids

Examples which are not groupoids.

- $(\mathbb{N},-)$ is not a groupoid because subtraction is not a binary operation on \mathbb{N}. Indeed, $3-4$ is not a natural number.
- $(\mathbb{Q},:)$, where : is the division, because $1: 0$ is not defined.

Semigroups.

A groupoid (S, \circ) is a semigroup if for every $x, y, z \in S$ we have

$$
x \circ(y \circ z)=(x \circ y) \circ z
$$

The above law is called associative law.
The associative law allows to write $a_{1} \circ a_{2} \circ a_{3}$ for $\left(a_{1} \circ a_{2}\right) \circ a_{3}$ or $a_{1} \circ\left(a_{2} \circ a_{3}\right)$.
Similarly, we write

$$
a_{1} \circ a_{2} \circ \ldots \circ a_{n}
$$

independently on the brackets.

Groupoids, Semigroups, Monoids

Examples of semigroups.

1) $(\mathbb{R},+),(\mathbb{Z},+),(\mathbb{N},+)$.
2) $(\mathbb{R}, \cdot),(\mathbb{Z}, \cdot),(\mathbb{N}, \cdot)$.
3) $\left(\mathbb{Z}_{n}, \oplus\right)$, $\left(\mathbb{Z}_{n}, \odot\right)$.
4) $\left(M_{n},+\right),\left(M_{n}, \cdot\right)$, where M_{n} is the set of square real matrices of order n and + and \cdot is addition and multiplication, respectively, of matrices.
5) (A, \circ) where A is the set of all mappings $f: X \rightarrow X$ for a set X, and \circ is the composition of mappings.
Examples of groupoids which are not semigroups.

- $(\mathbb{Z},-)$, i.e. the set of all integers with subtraction. Indeed, $2-(3-4)=3$ but $(2-3)-4=-5$.
- $(\mathbb{R} \backslash\{0\},:)$, i.e. the set of non-zero real numbers together with the division :. Indeed, $4:(2: 4)=8$, but $(4: 2): 4=\frac{1}{2}$.

Groupoids, Semigroups, Monoids

Neutral element. Given a groupoid (S, \circ). An element $e \in S$ is a neutral (also identity) element if

$$
e \circ x=x=x \circ e \quad \text { for every } x \in S
$$

Examples of neutral elements.

1) For $(\mathbb{R},+)$ the number 0 is its neutral element, the same holds for $(\mathbb{Z},+)$.
2) For (\mathbb{R}, \cdot) the number 1 is its neutral (identity) element, the same holds for (\mathbb{Z}, \cdot), and (\mathbb{N}, \cdot).
3) For $\left(M_{n}, \cdot\right)$ where \cdot is the multiplication of square matrices of order n the identity matrix is its neutral (identity) element.
4) $\left(\mathbb{Z}_{n}, \oplus\right)$ has the class $[0]_{n}$ as its neutral element.
5) $\left(\mathbb{Z}_{n}, \odot\right)$ has the class $[1]_{n}$ as its neutral (identity) element.

Groupoids, Semigroups, Monoids

Example of a groupoid that does not have a neutral element. The groupoid $(\mathbb{N} \backslash\{0\},+)$. Indeed, there is not a positive number e for which $n+e=n=e+n$ for every positive $n \in \mathbb{N}$

Proposition. Given a groupoid (S, \circ). If there exist elements e and f such that for every $x \in S$ we have $e \circ x=x$ and $x \circ f=x$, then $e=f$ is the neutral element of (S, \circ).

Groupoids, Semigroups, Monoids

Monoid. If in a semigroup (S, \circ) there exists a neutral element then we call (S, \circ) a monoid.
The fact that (S, \circ) is a monoid with the neutral element e is shortened to (S, \circ, e).

Powers in a monoid. Given a monoid (S, \circ, e) and its element $a \in S$. The powers of a are defined by:

$$
a^{0}=e, \quad a^{i+1}=a^{i} \circ a \text { for every } i \geq 0
$$

Invertible element. Given a monoid (S, \circ, e). An element $a \in S$ is invertible if there exists an element $y \in S$ such that

$$
a \circ y=e=y \circ a
$$

Groupoids, Semigroups, Monoids

Proposition. Given a monoid (S, \circ, e). If there are elements $a, x, y \in S$ such that

$$
x \circ a=e \text { and } a \circ y=e,
$$

then $x=y$.
Inverse element. Let (S, \circ, e) be a monoid, and $a \in S$ an invertible element. Let $y \in S$ satisfy

$$
a \circ y=e=y \circ a .
$$

Then y is the inverse element to a and is denoted by a^{-1}.

Groupoids, Semigroups, Monoids

Proposition.

Let (S, \circ, e) be a monoid. Then

- e is invertible and $e^{-1}=e$.
- If a is invertible then so is a^{-1}, and we have $\left(a^{-1}\right)^{-1}=a$.
- If a and b are invertible elements then so is $a \circ b$, and we have $(a \circ b)^{-1}=b^{-1} \circ a^{-1}$.

Cancellation by an inverse element.

Let (S, \circ, e) be a monoid, and let $a \in S$ is its invertible element. Then

$$
a \circ b=a \circ c, \text { or } b \circ a=c \circ a \text { implies } b=c \text {. }
$$

Groups

Groups. A monoid (S, \circ, e) in which every element is invertible is called a group.

Examples of groups.

- The monoid $(\mathbb{R},+, 0)$. Indeed, for every $x \in \mathbb{R}$ there exists $-x$ for which $x+(-x)=0=(-x)+x$.
- The monoid $(\mathbb{Z},+, 0)$. Indeed, for each integer x there exists an integer $-x$ for which $x+(-x)=0=(-x)+x$.
- The monoid $\left(\mathbb{R}^{+}, \cdot, 1\right)$, where \mathbb{R}^{+}is the set of all positive real numbers. Indeed, for every positive real number x there exists a positive real number $\frac{1}{x}$ for which $x \cdot \frac{1}{x}=1=\frac{1}{x} \cdot x$.
- The monoid $\left(\mathbb{Z}_{n}, \oplus,[0]_{n}\right)$. Indeed, for a class $[i]_{n}$ there exists a class $[n-i]_{n}$ for which $[i]_{n} \oplus[n-i]_{n}=[0]_{n}=[n-i]_{n} \oplus[i]_{n}$.

Groups

Examples.

- The monoid $(\mathbb{Z}, \cdot, 1)$ is not a group. Indeed, for example 2 is not invertible.
- The monoid $\left(\mathbb{Z}_{n}, \odot,[1]_{n}\right)$ is not a group. Indeed, the class $[0]_{n}$ is not invertible because for any $[i]_{n}$ we have $[0]_{n} \odot[i]_{n}=[0]_{n} \neq[1]_{n}$.
- Let A be the set of all permutation of $\{1,2, \ldots, n\}$, and let \circ be the composition. Then (A, \circ) is a group. Indeed, it is a monoid with the neutral element id; moreover, every permutation ϕ has its inverse permutation ϕ^{-1}.
- Let B be the set of all mappings from the set $\{1,2, \ldots, n\}$ into itself, where $n>1$. Let \circ be the composition. Then ($B, \circ, i d$) is not a group; indeed, it is a monoid but any mapping that is not one-to-one is not invertible.

Groups

Proposition. Given a group (S, \circ) with its neutral element e. Then for every two elements $a, b \in S$ there exist unique $x, y \in S$ such that

$$
a \circ x=b, \quad y \circ a=b .
$$

Theorem.

A semigroup (S, \circ) is a group if and only if every equation of the form $a \circ x=b$ and every equation of the form $y \circ a=b$ has at least one solution.

More precisely: A semigroup (S, \circ) is a group if and only if for every two elements $a, b \in S$ there exist $x, y \in S$ such that $a \circ x=b$ and $y \circ a=b$.

Groups

Commutative semigroups, monoids, groups.

A semigroup (S, \circ) (monoid, group) is called commutative if it satisfies the commutative law, i.e. for every two elements $x, y \in S$

$$
x \circ y=y \circ x
$$

