Week 8 Groups Discrete Math

Marie Demlová http://math.fel.cvut.c/zen/people/demlova

April 7, 2022

Subsemigroups, Submonoids Applications to Residue Classes Modulo *n* Subgroups

Groups

Groups. A monoid (S, \circ, e) in which every element is invertible is called a group.

Examples of groups.

- ▶ The monoid $(\mathbb{R}, +, 0)$. Indeed, for every $x \in \mathbb{R}$ there exists -x for which x + (-x) = 0 = (-x) + x.
- ► The monoid (Z, +, 0). Indeed, for each integer x there exists an integer -x for which x + (-x) = 0 = (-x) + x.
- ► The monoid (ℝ⁺, ·, 1), where ℝ⁺ is the set of all positive real numbers. Indeed, for every positive real number x there exists a positive real number ¹/_x for which x · ¹/_x = 1 = ¹/_x · x.
- The monoid (Z_n, ⊕, [0]_n). Indeed, for a class [i]_n there exists a class [n − i]_n for which [i]_n ⊕ [n − i]_n = [0]_n = [n − i]_n ⊕ [i]_n.

Subsemigroups, Submonoids Applications to Residue Classes Modulo *n* Subgroups

Groups

Examples.

- ► The monoid (Z, ·, 1) is not a group. Indeed, for example 2 is not invertible.
- The monoid (Z_n, ⊙, [1]_n) is not a group. Indeed, the class [0]_n is not invertible because for any [i]_n we have [0]_n ⊙ [i]_n = [0]_n ≠ [1]_n.
- Let A be the set of all permutation of {1,2,...,n}, and let ∘ be the composition. Then (A, ∘) is a group. Indeed, it is a monoid with the neutral element *id*; moreover, every permutation φ has its inverse permutation φ⁻¹.
- Let B be the set of all mappings from the set {1,2,...,n} into itself, where n > 1. Let ∘ be the composition. Then (B, ∘, id) is not a group; indeed, it is a monoid but any mapping that is not one-to-one is not invertible.

Subsemigroups, Submonoids Applications to Residue Classes Modulo *n* Subgroups

Groups

Proposition. Given a group (S, \circ) with its neutral element *e*. Then for every two elements $a, b \in S$ there exist unique $x, y \in S$ such that

$$a \circ x = b, \qquad y \circ a = b.$$

Theorem.

A semigroup (S, \circ) is a group if and only if every equation of the form $a \circ x = b$ and every equation of the form $y \circ a = b$ has at least one solution.

More precisely: A semigroup (S, \circ) is a group if and only if for every two elements $a, b \in S$ there exist $x, y \in S$ such that $a \circ x = b$ and $y \circ a = b$.

Subsemigroups, Submonoids Applications to Residue Classes Modulo *n* Subgroups

Commutative semigroups, monoids, groups.

A semigroup (S, \circ) (monoid, group) is called commutative if it satisfies the *commutative law*, i.e. for every two elements $x, y \in S$

 $x \circ y = y \circ x.$

Subsemigroups, Submonoids Applications to Residue Classes Modulo *n* Subgroups

Subsemigroups, Submonoids

Subsemigroup.

Given a semigroup (S, \circ) . A subset $T \subseteq S$ together with an operation \circ forms a subsemigroup of the semigroup (S, \circ) , if for every two elements $x, y \in T$ we have $x \circ y \in T$. (In this case (T, \circ) is also a semigroup.)

Examples of subsemigroups.

- ▶ \mathbb{N} together with addition forms a subsemigroup of $(\mathbb{Z}, +)$.
- ► The set of all regular matrices together with multiplication of matrices forms a subsemigroup of (M_n, ·), where M_n is the set of all square matrices of order n.
- ► The set of all positive real numbers together with multiplication forms a subsemigroup of (ℝ, ·).

Subsemigroups, Submonoids Applications to Residue Classes Modulo *n* Subgroups

Subsemigroups, Submonoids

Submonoid. Given a monoid (S, \circ, e) . A subset $T \subseteq S$ forms a submonoid if it forms a subsemigroup and moreover $e \in T$.

Examples of submonoids.

- The set of all natural numbers N together with addition is a submonoid of (Z, +, 0), since 0 ∈ N.
- ► The set of all regular square matrices of order *n* together with multiplication of matrices forms a submonoid of (*M_n*, ·, *E*), since the identity matrix *E* is regular.
- Denote by *T_X* the set of all mappings from a set *X* into itself, let ∘ be the composition. Then (*T_X*, ∘, *id*) where *id* is the identity mapping is a monoid. The set of all bijections from *T_X* forms a submonoid of (*T_X*, ∘), indeed, a composition of two bijections is a bijection, and the identity mapping is a bijection.

Subsemigroups, Submonoids Applications to Residue Classes Modulo *n* Subgroups

Applications to Residue Classes Modulo n

Euler function.

Given a natural number n > 1. Then the value of Euler function $\phi(n)$ equals to the number of all natural numbers i, $0 \le i < n$, that are relatively prime to n.

For example $\phi(6) = 2$, since there are only two natural numbers between 0 and 5 that are relatively prime to 6, namely 1 and 5.

Properties of Euler Function.

- Let p be a prime number, then $\phi(p) = p 1$.
- If p is a prime number and $k \ge 1$ then $\phi(n) = p^k p^{k-1}$.
- ▶ If *n* and *m* are relatively prime natural numbers then $\phi(n \cdot m) = \phi(n) \cdot \phi(m)$.

Subsemigroups, Submonoids Applications to Residue Classes Modulo *n* Subgroups

Applications to Residue Classes Modulo n

The Group of Invertible Elements of $(\mathbb{Z}_n, \cdot, 1)$.

 (\mathbb{Z}_n, \cdot) is a monoid with its neutral element 1. The set of all invertible elements of it is

 $\mathbb{Z}_n^{\star} = \{i \mid 0 \le i < n, i \text{ and } n \text{ are relatively prime}\}.$

Therefore, $(\mathbb{Z}_n^{\star}, \cdot, 1)$ is a group with $\phi(n)$ elements.

Theorem (Euler-Fermat).

Given a natural number n > 1. Then for every integer *a* relatively prime to *n* we have

$$a^{\phi(n)} \equiv 1 \pmod{n}.$$

Subsemigroups, Submonoids Applications to Residue Classes Modulo *n* Subgroups

Subgroups

A subgroup. Given a group (G, \circ, e) . We say that $H \subseteq G$ forms a subgroup of (G, \circ, e) if

- For every x, y ∈ H it holds that x ∘ y ∈ H, (i.e. forms a subsemigroup);
- $e \in H$, (i.e. forms a submonoid);
- for every $x \in H$ it holds that $x^{-1} \in H$.

Theorem. Let (G, \circ, e) be a finite group and $H \subseteq G$ its subgroup. Then the number of elements of H divides the number of elements of G.

Subsemigroups, Submonoids Applications to Residue Classes Modulo *n* Subgroups

Groups

Let (G, \circ, e) be a finite group, $a \in G$. Consider the set of all powers of a:

$$\{a, a^2, a^3, \ldots, a^k, \ldots\}.$$

Since G is a finite set, there must exist i and j, i < j, such that $a^i = a^j$. There is a^{-1} . Therefore

$$a^{i} = a^{j}$$
 implies $a^{i-1} = a^{j-1}$, etc. $e = a^{0} = a^{j-i}$.

Proposition. Let (G, \circ, e) be a finite group, $a \in G$. Then there exists the smallest positive integer r for which $a^r = e$. Moreover, $\{a, a^2, \ldots, a^r\}$ forms a subgroup of (G, \circ, e) .

Subsemigroups, Submonoids Applications to Residue Classes Modulo *n* Subgroups

Groups

The subgroup formed by $\{a, a^2, \ldots, a^r\}$ is the subgroup generated by a and is denoted by $\langle a \rangle$.

The smallest positive r for which $a^r = e$ is the order of a and it is denoted by r(a). Note that $r(a) = |\langle a \rangle|$.

Corollary. Given a finite group (G, \circ, n) with *n* elements. Then the order of any element $a \in G$ divides *n*.

Theorem.

Given a finite group (G, \circ, e) with *n* elements. Then for every $a \in G$ we have

$$a^n = e.$$

Subsemigroups, Submonoids Applications to Residue Classes Modulo *n* Subgroups

Subgroups

Proposition.

A number r equals to the order r(a) of a in a finite group (G, \cdot, e) if and only if the following two conditions are satisfied:

$$\blacktriangleright a^r = e$$

• If $a^s = e$ for some natural number s then r divides s.