Week 8
 Groups
 Discrete Math

Marie Demlová
http://math.fel.cvut.c/zen/people/demlova

April 7, 2022

Groups

Groups. A monoid (S, \circ, e) in which every element is invertible is called a group.

Examples of groups.

- The monoid $(\mathbb{R},+, 0)$. Indeed, for every $x \in \mathbb{R}$ there exists $-x$ for which $x+(-x)=0=(-x)+x$.
- The monoid $(\mathbb{Z},+, 0)$. Indeed, for each integer x there exists an integer $-x$ for which $x+(-x)=0=(-x)+x$.
- The monoid $\left(\mathbb{R}^{+}, \cdot, 1\right)$, where \mathbb{R}^{+}is the set of all positive real numbers. Indeed, for every positive real number x there exists a positive real number $\frac{1}{x}$ for which $x \cdot \frac{1}{x}=1=\frac{1}{x} \cdot x$.
- The monoid $\left(\mathbb{Z}_{n}, \oplus,[0]_{n}\right)$. Indeed, for a class $[i]_{n}$ there exists a class $[n-i]_{n}$ for which $[i]_{n} \oplus[n-i]_{n}=[0]_{n}=[n-i]_{n} \oplus[i]_{n}$.

Groups

Examples.

- The monoid $(\mathbb{Z}, \cdot, 1)$ is not a group. Indeed, for example 2 is not invertible.
- The monoid $\left(\mathbb{Z}_{n}, \odot,[1]_{n}\right)$ is not a group. Indeed, the class $[0]_{n}$ is not invertible because for any $[i]_{n}$ we have $[0]_{n} \odot[i]_{n}=[0]_{n} \neq[1]_{n}$.
- Let A be the set of all permutation of $\{1,2, \ldots, n\}$, and let \circ be the composition. Then (A, \circ) is a group. Indeed, it is a monoid with the neutral element id; moreover, every permutation ϕ has its inverse permutation ϕ^{-1}.
- Let B be the set of all mappings from the set $\{1,2, \ldots, n\}$ into itself, where $n>1$. Let \circ be the composition. Then ($B, \circ, i d$) is not a group; indeed, it is a monoid but any mapping that is not one-to-one is not invertible.

Groups

Proposition. Given a group (S, \circ) with its neutral element e. Then for every two elements $a, b \in S$ there exist unique $x, y \in S$ such that

$$
a \circ x=b, \quad y \circ a=b .
$$

Theorem.

A semigroup (S, \circ) is a group if and only if every equation of the form $a \circ x=b$ and every equation of the form $y \circ a=b$ has at least one solution.
More precisely: A semigroup (S, \circ) is a group if and only if for every two elements $a, b \in S$ there exist $x, y \in S$ such that $a \circ x=b$ and $y \circ a=b$.

Groups

Commutative semigroups, monoids, groups.
A semigroup (S, \circ) (monoid, group) is called commutative if it satisfies the commutative law, i.e. for every two elements $x, y \in S$

$$
x \circ y=y \circ x
$$

Subsemigroups, Submonoids

Subsemigroup.

Given a semigroup (S, \circ). A subset $T \subseteq S$ together with an operation \circ forms a subsemigroup of the semigroup (S, \circ), if for every two elements $x, y \in T$ we have $x \circ y \in T$. (In this case (T, \circ) is also a semigroup.)

Examples of subsemigroups.

- \mathbb{N} together with addition forms a subsemigroup of $(\mathbb{Z},+)$.
- The set of all regular matrices together with multiplication of matrices forms a subsemigroup of $\left(M_{n}, \cdot\right)$, where M_{n} is the set of all square matrices of order n.
- The set of all positive real numbers together with multiplication forms a subsemigroup of (\mathbb{R}, \cdot).

Subsemigroups, Submonoids

Submonoid. Given a monoid (S, \circ, e). A subset $T \subseteq S$ forms a submonoid if it forms a subsemigroup and moreover $e \in T$.

Examples of submonoids.

- The set of all natural numbers \mathbb{N} together with addition is a submonoid of $(\mathbb{Z},+, 0)$, since $0 \in \mathbb{N}$.
- The set of all regular square matrices of order n together with multiplication of matrices forms a submonoid of $\left(M_{n}, \cdot, E\right)$, since the identity matrix E is regular.
- Denote by T_{X} the set of all mappings from a set X into itself, let \circ be the composition. Then ($T_{X}, \circ, i d$) where id is the identity mapping is a monoid. The set of all bijections from T_{X} forms a submonoid of (T_{X}, \circ), indeed, a composition of two bijections is a bijection, and the identity mapping is a bijection.

Applications to Residue Classes Modulo n

Euler function.

Given a natural number $n>1$. Then the value of Euler function $\phi(n)$ equals to the number of all natural numbers $i, 0 \leq i<n$, that are relatively prime to n.
For example $\phi(6)=2$, since there are only two natural numbers between 0 and 5 that are relatively prime to 6 , namely 1 and 5 .

Properties of Euler Function.

- Let p be a prime number, then $\phi(p)=p-1$.
- If p is a prime number and $k \geq 1$ then $\phi(n)=p^{k}-p^{k-1}$.
- If n and m are relatively prime natural numbers then $\phi(n \cdot m)=\phi(n) \cdot \phi(m)$.

Applications to Residue Classes Modulo n

The Group of Invertible Elements of $\left(\mathbb{Z}_{n}, \cdot, 1\right)$.
$\left(\mathbb{Z}_{n}, \cdot\right)$ is a monoid with its neutral element 1 . The set of all invertible elements of it is

$$
\mathbb{Z}_{n}^{\star}=\{i \mid 0 \leq i<n, \quad i \text { and } n \text { are relatively prime }\} .
$$

Therefore, $\left(\mathbb{Z}_{n}^{\star}, \cdot, 1\right)$ is a group with $\phi(n)$ elements.

Theorem (Euler-Fermat).

Given a natural number $n>1$. Then for every integer a relatively prime to n we have

$$
a^{\phi(n)} \equiv 1(\quad \bmod n)
$$

Subgroups

A subgroup. Given a group (G, o, e). We say that $H \subseteq G$ forms a subgroup of (G, o, e) if

- for every $x, y \in H$ it holds that $x \circ y \in H$, (i.e. forms a subsemigroup);
- $e \in H$, (i.e. forms a submonoid);
- for every $x \in H$ it holds that $x^{-1} \in H$.

Theorem. Let (G, \circ, e) be a finite group and $H \subseteq G$ its subgroup. Then the number of elements of H divides the number of elements of G.

Groups

Let (G, \circ, e) be a finite group, $a \in G$. Consider the set of all powers of a :

$$
\left\{a, a^{2}, a^{3}, \ldots, a^{k}, \ldots\right\}
$$

Since G is a finite set, there must exist i and $j, i<j$, such that $a^{i}=a^{j}$. There is a^{-1}. Therefore

$$
a^{i}=a^{j} \text { implies } a^{i-1}=a^{j-1}, \text { etc. } e=a^{0}=a^{j-i} .
$$

Proposition. Let (G, \circ, e) be a finite group, $a \in G$. Then there exists the smallest positive integer r for which $a^{r}=e$. Moreover, $\left\{a, a^{2}, \ldots, a^{r}\right\}$ forms a subgroup of (G, \circ, e).

Groups

The subgroup formed by $\left\{a, a^{2}, \ldots, a^{r}\right\}$ is the subgroup generated by a and is denoted by $\langle a\rangle$.
The smallest positive r for which $a^{r}=e$ is the order of a and it is denoted by $r(a)$. Note that $r(a)=|\langle a\rangle|$.

Corollary. Given a finite group (G, \circ, n) with n elements. Then the order of any element $a \in G$ divides n.

Theorem.

Given a finite group (G, \circ, e) with n elements. Then for every $a \in G$ we have

$$
a^{n}=e
$$

Subgroups

Proposition.

A number r equals to the order $r(a)$ of a in a finite $\operatorname{group}(G, \cdot, e)$ if and only if the following two conditions are satisfied:

- $a^{r}=e$.
- If $a^{s}=e$ for some natural number s then r divides s.

