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Groups. A monoid (S , ◦, e) in which every element is invertible is
called a group.

Examples of groups.
I The monoid (R,+, 0). Indeed, for every x ∈ R there exists
−x for which x + (−x) = 0 = (−x) + x .

I The monoid (Z,+, 0). Indeed, for each integer x there exists
an integer −x for which x + (−x) = 0 = (−x) + x .

I The monoid (R+, ·, 1), where R+ is the set of all positive real
numbers. Indeed, for every positive real number x there exists
a positive real number 1x for which x · 1x = 1 = 1

x · x .
I The monoid (Zn,⊕, [0]n). Indeed, for a class [i ]n there exists a

class [n − i ]n for which [i ]n ⊕ [n − i ]n = [0]n = [n − i ]n ⊕ [i ]n.
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Examples.
I The monoid (Z, ·, 1) is not a group. Indeed, for example 2 is

not invertible.
I The monoid (Zn,�, [1]n) is not a group. Indeed, the class [0]n

is not invertible because for any [i ]n we have
[0]n � [i ]n = [0]n 6= [1]n.

I Let A be the set of all permutation of {1, 2, . . . , n}, and let ◦
be the composition. Then (A, ◦) is a group. Indeed, it is a
monoid with the neutral element id ; moreover, every
permutation φ has its inverse permutation φ−1.

I Let B be the set of all mappings from the set {1, 2, . . . , n}
into itself, where n > 1. Let ◦ be the composition. Then
(B, ◦, id) is not a group; indeed, it is a monoid but any
mapping that is not one-to-one is not invertible.
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Proposition. Given a group (S , ◦) with its neutral element e.
Then for every two elements a, b ∈ S there exist unique x , y ∈ S
such that

a ◦ x = b, y ◦ a = b.

Theorem.

A semigroup (S , ◦) is a group if and only if every equation of the
form a ◦ x = b and every equation of the form y ◦ a = b has at
least one solution.

More precisely: A semigroup (S , ◦) is a group if and only if for
every two elements a, b ∈ S there exist x , y ∈ S such that
a ◦ x = b and y ◦ a = b.
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Commutative semigroups, monoids, groups.

A semigroup (S , ◦) (monoid, group) is called commutative if it
satisfies the commutative law, i.e. for every two elements x , y ∈ S

x ◦ y = y ◦ x .
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Subsemigroup.

Given a semigroup (S , ◦). A subset T ⊆ S together with an
operation ◦ forms a subsemigroup of the semigroup (S , ◦), if for
every two elements x , y ∈ T we have x ◦ y ∈ T . (In this case
(T , ◦) is also a semigroup.)

Examples of subsemigroups.
I N together with addition forms a subsemigroup of (Z,+).
I The set of all regular matrices together with multiplication of

matrices forms a subsemigroup of (Mn, ·), where Mn is the set
of all square matrices of order n.

I The set of all positive real numbers together with
multiplication forms a subsemigroup of (R, ·).
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Submonoid. Given a monoid (S , ◦, e). A subset T ⊆ S forms a
submonoid if it forms a subsemigroup and moreover e ∈ T .

Examples of submonoids.
I The set of all natural numbers N together with addition is a

submonoid of (Z,+, 0), since 0 ∈ N.
I The set of all regular square matrices of order n together with

multiplication of matrices forms a submonoid of (Mn, ·,E ),
since the identity matrix E is regular.

I Denote by TX the set of all mappings from a set X into itself,
let ◦ be the composition. Then (TX , ◦, id) where id is the
identity mapping is a monoid. The set of all bijections from
TX forms a submonoid of (TX , ◦), indeed, a composition of
two bijections is a bijection, and the identity mapping is a
bijection.
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Euler function.

Given a natural number n > 1. Then the value of Euler function
φ(n) equals to the number of all natural numbers i , 0 ≤ i < n,
that are relatively prime to n.

For example φ(6) = 2, since there are only two natural numbers
between 0 and 5 that are relatively prime to 6, namely 1 and 5.

Properties of Euler Function.
I Let p be a prime number, then φ(p) = p − 1.
I If p is a prime number and k ≥ 1 then φ(n) = pk − pk−1.
I If n and m are relatively prime natural numbers then
φ(n ·m) = φ(n) · φ(m).
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The Group of Invertible Elements of (Zn, ·, 1).
(Zn, ·) is a monoid with its neutral element 1. The set of all
invertible elements of it is

Z?n = {i | 0 ≤ i < n, i and n are relatively prime}.

Therefore, (Z?n, ·, 1) is a group with φ(n) elements.

Theorem (Euler-Fermat).

Given a natural number n > 1. Then for every integer a relatively
prime to n we have

aφ(n) ≡ 1 ( mod n).
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A subgroup. Given a group (G , ◦, e). We say that H ⊆ G forms a
subgroup of (G , ◦, e) if
I for every x , y ∈ H it holds that x ◦ y ∈ H, (i.e. forms a

subsemigroup);
I e ∈ H, (i.e. forms a submonoid);
I for every x ∈ H it holds that x−1 ∈ H.

Theorem. Let (G , ◦, e) be a finite group and H ⊆ G its subgroup.
Then the number of elements of H divides the number of elements
of G .
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Let (G , ◦, e) be a finite group, a ∈ G . Consider the set of all
powers of a:

{a, a2, a3, . . . , ak , . . .}.

Since G is a finite set, there must exist i and j , i < j , such that
ai = aj . There is a−1. Therefore

ai = aj implies ai−1 = aj−1, etc. e = a0 = aj−i .

Proposition. Let (G , ◦, e) be a finite group, a ∈ G . Then there
exists the smallest positive integer r for which ar = e. Moreover,
{a, a2, . . . , ar} forms a subgroup of (G , ◦, e).
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The subgroup formed by {a, a2, . . . , ar} is the subgroup generated
by a and is denoted by 〈a〉.
The smallest positive r for which ar = e is the order of a and it is
denoted by r(a). Note that r(a) = |〈a〉|.

Corollary. Given a finite group (G , ◦, n) with n elements. Then
the order of any element a ∈ G divides n.

Theorem.

Given a finite group (G , ◦, e) with n elements. Then for every
a ∈ G we have

an = e.
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Proposition.

A number r equals to the order r(a) of a in a finite group (G , ·, e)
if and only if the following two conditions are satisfied:
I ar = e.
I If as = e for some natural number s then r divides s.
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