> Week 9 Groups Discrete Math

Marie Demlová http://math.fel.cvut.cz/en/people/demlova

April 14, 2022

Subgroups

Groups. A monoid (S, \circ, e) in which every element is invertible is called a group.

Subgroups

Subgroups

A subgroup. Given a group (G, \circ, e) . We say that $H \subseteq G$ forms a subgroup of (G, \circ, e) if

- For every x, y ∈ H it holds that x ∘ y ∈ H, (i.e. forms a subsemigroup);
- $e \in H$, (i.e. forms a submonoid);
- for every $x \in H$ it holds that $x^{-1} \in H$.

Theorem. Let (G, \circ, e) be a finite group and $H \subseteq G$ its subgroup. Then the number of elements of H divides the number of elements of G.

Subgroups

Subgroups

Let (G, \circ, e) be a finite group, $a \in G$. Consider the set of all powers of a:

$$\{a,a^2,a^3,\ldots,a^k,\ldots\}.$$

Since G is a finite set, there must exist i and j, i < j, such that $a^i = a^j$. There is a^{-1} . Therefore

$$a^{i} = a^{j}$$
 implies $a^{i-1} = a^{j-1}$, etc. $e = a^{0} = a^{j-i}$.

Proposition. Let (G, \circ, e) be a finite group, $a \in G$. Then there exists the smallest positive integer r for which $a^r = e$. Moreover, $\{a, a^2, \ldots, a^r\}$ forms a subgroup of (G, \circ, e) .

Subgroups

Subgroups

The subgroup formed by $\{a, a^2, \ldots, a^r\}$ is the subgroup generated by a and is denoted by $\langle a \rangle$.

The smallest positive r for which $a^r = e$ is the order of a and it is denoted by r(a). Note that $r(a) = |\langle a \rangle|$.

Proposition. Given a finite group (G, \circ, n) with *n* elements. Then the order of any element $a \in G$ divides *n*.

Theorem.

Given a finite group (G, \circ, e) with *n* elements. Then for every $a \in G$ we have

$$a^n = e.$$

Subgroups

Subgroups

Proposition.

A number r equals to the order r(a) of a in a finite group (G, \cdot, e) if and only if the following two conditions are satisfied:

$$\blacktriangleright a^r = e$$

• If $a^s = e$ for some natural number s then r divides s.

Subgroups

Subgroups

Proposition.

Let $\mathcal{G} = (G, \circ, e)$ be a finite group. Let $a \in G$ have order r(a). Then

$$r(a^i) = rac{r(a)}{\gcd(r(a),i)}$$

Cyclic groups

A cyclic group. Given a group $\mathcal{G} = (G, \circ, e)$. If there exists an element $a \in G$ for which $\langle a \rangle = G$ we say that the group is cyclic and that a is a generating element of (G, \circ, e) .

Examples.

- ► (Z_n, +, 0) (for any natural number n > 1) is a cyclic group with its generating element 1.
- For every prime number p the group (Z^{*}_p, ·, 1) is a cyclic group. It is not straightforward to show it. Moreover, to find a generating element is a difficult task for some primes p.
- ▶ The group $(\mathbb{Z}_8^*, \cdot, 1)$ is not cyclic. We have $\mathbb{Z}_8^* = \{1, 3, 5, 7\}$ and there is no element with order 4.

Subgroups of a Finite Cyclic Group

Cyclic groups

Proposition.

Given a finite cyclic group $\mathcal{G} = (G, \circ, e)$ with *n* elements. Then for every natural number *d* which divides *n* there exists a subgroup of \mathcal{G} with *d* elements.

Remark.

A finite cyclic group has only subgroups that itself are cyclic.

Exercise 1. Given a group $(\mathbb{Z}_{17}^*, \cdot, 1)$. Find the order of 2. Is 2 a generating element? Write down $\langle 2 \rangle$ in \mathbb{Z}_{17}^* .

Exercise 2. Given a group $(\mathbb{Z}_{17}^{\star}, \cdot, 1)$. Find all its generating elements.

Exercise 3. Given a group $(\mathbb{Z}_{17}^{\star}, \cdot, 1)$. Find all its subgroups.

Exercise 4.

Given a group ($\mathbb{Z}_{14}^{\star}, \cdot, 1$).

- a) Write down all its elements.
- b) Find orders r(a) for all its elements.
- c) Is the group a cyclic group?
- d) Find all its subgroups.