Week 9

Groups

Discrete Math

Marie Demlová
http://math.fel.cvut.cz/en/people/demlova

April 14, 2022

Groups

Groups. A monoid (S, \circ, e) in which every element is invertible is called a group.

Subgroups

A subgroup. Given a group (G, \circ, e). We say that $H \subseteq G$ forms a subgroup of (G, o, e) if

- for every $x, y \in H$ it holds that $x \circ y \in H$, (i.e. forms a subsemigroup);
- $e \in H$, (i.e. forms a submonoid);
- for every $x \in H$ it holds that $x^{-1} \in H$.

Theorem. Let (G, \circ, e) be a finite group and $H \subseteq G$ its subgroup. Then the number of elements of H divides the number of elements of G.

Subgroups

Let (G, \circ, e) be a finite group, $a \in G$. Consider the set of all powers of a :

$$
\left\{a, a^{2}, a^{3}, \ldots, a^{k}, \ldots\right\}
$$

Since G is a finite set, there must exist i and $j, i<j$, such that $a^{i}=a^{j}$. There is a^{-1}. Therefore

$$
a^{i}=a^{j} \text { implies } a^{i-1}=a^{j-1}, \text { etc. } e=a^{0}=a^{j-i}
$$

Proposition. Let (G, \circ, e) be a finite group, $a \in G$. Then there exists the smallest positive integer r for which $a^{r}=e$. Moreover, $\left\{a, a^{2}, \ldots, a^{r}\right\}$ forms a subgroup of (G, o, e).

Subgroups

The subgroup formed by $\left\{a, a^{2}, \ldots, a^{r}\right\}$ is the subgroup generated by a and is denoted by $\langle a\rangle$.
The smallest positive r for which $a^{r}=e$ is the order of a and it is denoted by $r(a)$. Note that $r(a)=|\langle a\rangle|$.

Proposition. Given a finite group (G, \circ, n) with n elements. Then the order of any element $a \in G$ divides n.

Theorem.

Given a finite group (G, \circ, e) with n elements. Then for every $a \in G$ we have

$$
a^{n}=e .
$$

Subgroups

Proposition.

A number r equals to the order $r(a)$ of a in a finite $\operatorname{group}(G, \cdot, e)$ if and only if the following two conditions are satisfied:

- $a^{r}=e$.
- If $a^{s}=e$ for some natural number s then r divides s.

Subgroups

Proposition.

Let $\mathcal{G}=(G, o, e)$ be a finite group. Let $a \in G$ have order $r(a)$. Then

$$
r\left(a^{i}\right)=\frac{r(a)}{\operatorname{gcd}(r(a), i)}
$$

Cyclic groups

A cyclic group. Given a group $\mathcal{G}=(G, \circ, e)$. If there exists an element $a \in G$ for which $\langle a\rangle=G$ we say that the group is cyclic and that a is a generating element of (G, \circ, e).

Examples.

- $\left(\mathbb{Z}_{n},+, 0\right)$ (for any natural number $\left.n>1\right)$ is a cyclic group with its generating element 1.
- For every prime number p the group $\left(\mathbb{Z}_{p}^{\star}, \cdot, 1\right)$ is a cyclic group. It is not straightforward to show it. Moreover, to find a generating element is a difficult task for some primes p.
- The group $\left(\mathbb{Z}_{8}^{\star}, \cdot, 1\right)$ is not cyclic. We have $\mathbb{Z}_{8}^{\star}=\{1,3,5,7\}$ and there is no element with order 4.

Cyclic groups

Proposition.

Given a finite cyclic group $\mathcal{G}=(G, \circ, e)$ with n elements. Then for every natural number d which divides n there exists a subgroup of \mathcal{G} with d elements.

Remark.

A finite cyclic group has only subgroups that itself are cyclic.

Exercises

Exercise 1.

Given a group $\left(\mathbb{Z}_{17}^{\star}, \cdot, 1\right)$. Find the order of 2 . Is 2 a generating element? Write down $\langle 2\rangle$ in \mathbb{Z}_{17}^{\star}.

Exercise 2.

Given a group $\left(\mathbb{Z}_{17}^{\star}, \cdot, 1\right)$. Find all its generating elements.

Exercises

Exercise 3.
Given a group $\left(\mathbb{Z}_{17}^{\star}, \cdot, 1\right)$. Find all its subgroups.
Exercise 4.
Given a group $\left(\mathbb{Z}_{14}^{\star}, \cdot, 1\right)$.
a) Write down all its elements.
b) Find orders $r(a)$ for all its elements.
c) Is the group a cyclic group?
d) Find all its subgroups.

