Week 10
 Difference Equations
 Discrete Math

Marie Demlová
http://math.fel.cvut.cz/en/people/demlova

April 21, 2022

Difference Equations, Recursive Equations

Sequences.

A sequence is a mapping from the set of all integers greater or equal to an integer n_{0} into the set of all real numbers. Hence

$$
\left\{a_{n_{0}}, a_{n_{0}+1}, a_{n_{0}+2}, \ldots\right\} \quad \text { where } a_{i} \in \mathbb{R}
$$

Linear Difference Equations.

Let $c_{i}(n), i \in\{0, \ldots, k-1\}$, be functions $\mathbb{Z} \rightarrow \mathbb{R}, c_{0}(n)$ not identically zero, and let $\left\{b_{n}\right\}_{n=n_{0}}^{\infty}$ be a sequence. Then the equation

$$
a_{n+k}+c_{k-1}(n) a_{n+k-1}+\ldots+c_{1}(n) a_{n+1}+c_{0}(n) a_{n}=b_{n}, n \geq n_{0}
$$

is a linear difference equation of order k (also a linear recursive equation of order k).

Difference Equations, Recursive Equations

Functions $c_{i}(n)$ are coefficients of the equation, the sequence $\left\{b_{n}\right\}_{n=n_{0}}^{\infty}$ the right-hand side of the equation.

If $\left\{b_{n}\right\}_{n=n_{0}}^{\infty}$ is the zero sequence then we speak about homogeneous equation, otherwise the equation is non-homogeneous.

We write a linear difference equation also

$$
a_{n+k}+\sum_{i=0}^{k-1} c_{i}(n) a_{n+i}=b_{n}, n \geq n_{0}
$$

Difference Equations, Recursive Equations

Solutions of Linear Difference Equations.

A solution of a linear difference equation is any sequence $\left\{u_{n}\right\}_{n=n_{0}}^{\infty}$ such that if we substitute u_{n} for a_{n} in it we obtain a statement that is valid.

Initial Conditions.

Given a linear difference equation of order k

$$
a_{n+k}+c_{k-1}(n) a_{n+k-1}+\ldots+c_{1}(n) a_{n+1}+c_{0}(n) a_{n}=b_{n}, n \geq n_{0}
$$

By initial conditions we mean the following system

$$
a_{n_{0}}=A_{0}, a_{n_{0}+1}=A_{1}, \ldots, a_{n_{0}+k-1}=A_{k-1},
$$

where A_{i} are real numbers.

Difference Equations, Recursive Equations

The Associated Homogeneous Equation.
Given a linear difference equation

$$
a_{n+k}+c_{k-1}(n) a_{n+k-1}+\ldots+c_{1}(n) a_{n+1}+c_{0}(n) a_{n}=b_{n}, n \geq n_{0} .
$$

Then the equation

$$
a_{n+k}+c_{k-1}(n) a_{n+k-1}+\ldots+c_{1}(n) a_{n+1}+c_{0}(n) a_{n}=0, n \geq n_{0}
$$ is the associated homogeneous equation to the equation above.

Difference Equations, Recursive Equations

Proposition.

Given a linear difference equation. Then the following holds:

1. If $\left\{u_{n}\right\}_{n=n_{0}}^{\infty}$ and $\left\{v_{n}\right\}_{n=n_{0}}^{\infty}$ are two solutions of non homogeneous equation then $\left\{u_{n}\right\}_{n=n_{0}}^{\infty}-\left\{v_{n}\right\}_{n=n_{0}}^{\infty}$ is a solution of the associated homogeneous equation.
2. If $\left\{u_{n}\right\}_{n=n_{0}}^{\infty}$ is a solution of non homogeneous equation and $\left\{w_{n}\right\}_{n=n_{0}}^{\infty}$ is a solution of the associated homogeneous equation, then $\left\{u_{n}\right\}_{n=n_{0}}^{\infty}+\left\{w_{n}\right\}_{n=n_{0}}^{\infty}$ is a solution of non homogeneous equation.
3. Let $\left\{\hat{u}_{n}\right\}_{n=n_{0}}^{\infty}$ be a fixed solution of the non homogeneous equation. Then for every solution $\left\{v_{n}\right\}_{n=n_{0}}^{\infty}$ of it there exists a solution solution $\left\{w_{n}\right\}_{n=n_{0}}^{\infty}$ of the associated homogeneous equation for which

$$
\left\{v_{n}\right\}_{n=n_{0}}^{\infty}=\left\{\hat{u}_{n}\right\}_{n=n_{0}}^{\infty}+\left\{w_{n}\right\}_{n=n_{0}}^{\infty}
$$

Difference Equations, Recursive Equations

Theorem.

Given a homogeneous linear difference equation. Then for the set S of all solutions the following holds:

1. If $\left\{u_{n}\right\}_{n=n_{0}}^{\infty}$ and $\left\{v_{n}\right\}_{n=n_{0}}^{\infty}$ belong to S then so does $\left\{u_{n}\right\}_{n=n_{0}}^{\infty}+\left\{v_{n}\right\}_{n=n_{0}}^{\infty}$.
2. If $\left\{u_{n}\right\}_{n=n_{0}}^{\infty}$ belongs to S and α is any real number, then $\left\{k u_{n}\right\}_{n=n_{0}}^{\infty}$ belongs to S as well.

Difference Equations, Recursive Equations

The difference equation

$$
a_{n+k}+c_{k-1} a_{n+k-1}+\ldots+c_{1} a_{n+1}+c_{0} a_{n}=b_{n}, n \geq n_{0}, c_{i} \in \mathbb{R}
$$

i.e. coefficients $c_{i}(n)$ are constant functions, is difference equation with constance coefficients.

Characteristic equation of the equation above is

$$
\lambda^{k}+c_{k-1} \lambda^{k-1}+\ldots+c_{1} \lambda+c_{0}=0
$$

Any λ satisfying characteristic equation leads to one solution

$$
a_{n}=\left\{\lambda^{n}\right\}_{n=n_{0}}^{\infty}
$$

Linear Difference Equations with Constant Coefficients

Real roots of characteristic equation.

If λ is a root of the characteristic equation of multiplicity t then the following are linearly independent solutions of its homogeneous equation

$$
\left\{\lambda^{n}\right\}_{n=0}^{\infty},\left\{n \lambda^{n}\right\}_{n=0}^{\infty},\left\{n^{2} \lambda^{n}\right\}_{n=0}^{\infty}, \ldots,\left\{n^{t-1} \lambda^{n}\right\}_{n=0}^{\infty}
$$

Linear Difference Equations with Constant Coefficients

Complex roots of characteristic equation.
If $\lambda=a+ı b$ is a complex root of the characteristic equation of multiplicity t then the following are linearly independent complex solutions of its homogeneous equation

$$
\left\{(a+ı b)^{n}\right\}_{n=0}^{\infty} \text { and }\left\{(a-ı b)^{n}\right\}_{n=0}^{\infty}
$$

and the following real solutions

$$
\left\{r^{n} \cos n \varphi\right\}_{n=0}^{\infty} \text { and }\left\{r^{n} \sin n \varphi\right\}_{n=0}^{\infty}
$$

Exercises

Exercise 1.

Given a group $\left(\mathbb{Z}_{17}^{\star}, \cdot, 1\right)$. Find the order of 2 . Is 2 a generating element? Write down $\langle 2\rangle$ in \mathbb{Z}_{17}^{\star}.

Exercise 2.

Given a group $\left(\mathbb{Z}_{17}^{\star}, \cdot, 1\right)$. Find all its generating elements.

Exercises

Exercise 3.

Given a group $\left(\mathbb{Z}_{17}^{\star}, \cdot, 1\right)$. Find all its subgroups.

Exercise 4.

Given a group $\left(\mathbb{Z}_{14}^{\star}, \cdot, 1\right)$.
a) Write down all its elements.
b) Find orders $r(a)$ for all its elements.
c) Is the group a cyclic group?
d) Find all its subgroups.

Exercises

Exercise 5.

Solve the following difference equation

$$
\begin{equation*}
5 a_{n}=a_{n+1}+6 a_{n-1}, n \geq 1, a_{1}=9, a_{2}=21 \tag{1}
\end{equation*}
$$

Exercise 6.

Solve the following difference equation

$$
\begin{equation*}
a_{n}=-2 n a_{n-1}+3 n(n-1) a_{n-2}, a_{0}=1, a_{1}=2 \tag{2}
\end{equation*}
$$

using the substitution $a_{n}=n!b_{n}$.

Exercises

Exercise 7.

The Fibonacci sequence satisfies

$$
\begin{equation*}
F_{n+2}=F_{n+1}+F_{n}, F_{0}=0, F_{1}=1 \tag{3}
\end{equation*}
$$

Find the formula for F_{n}.

Exercise 8.

Solve the following difference equation

$$
5 a_{n}=a_{n+1}+6 a_{n-1}, \quad n \geq 1, \quad a_{1}=9, a_{2}=21
$$

