Week 10
 Difference Equations
 Discrete Math

Marie Demlová
http://math.fel.cvut.cz/en/people/demlova

April 28, 2022

Linear Difference Equations with Constant Coefficients

The difference equation

$$
a_{n+k}+c_{k-1} a_{n+k-1}+\ldots+c_{1} a_{n+1}+c_{0} a_{n}=b_{n}, n \geq n_{0}, c_{i} \in \mathbb{R}
$$

i.e. coefficients $c_{i}(n)$ are constant functions, is difference equation with constant coefficients.

Characteristic equation of the equation above is

$$
\lambda^{k}+c_{k-1} \lambda^{k-1}+\ldots+c_{1} \lambda+c_{0}=0 .
$$

Any λ satisfying characteristic equation leads to one solution

$$
a_{n}=\left\{\lambda^{n}\right\}_{n=n_{0}}^{\infty} .
$$

Homogeneous Linear Difference Equations with Constant Coefficients

Real roots of characteristic equation.

If λ is a root of the characteristic equation of multiplicity t then the following are linearly independent solutions of its homogeneous equation

$$
\left\{\lambda^{n}\right\}_{n=0}^{\infty},\left\{n \lambda^{n}\right\}_{n=0}^{\infty},\left\{n^{2} \lambda^{n}\right\}_{n=0}^{\infty}, \ldots,\left\{n^{t-1} \lambda^{n}\right\}_{n=0}^{\infty}
$$

Homogeneous Linear Difference Equations with Constant Coefficients

Complex roots of characteristic equation.
If $\lambda=a+ı b$ is a complex root of the characteristic equation of multiplicity t then the following are linearly independent complex solutions of its homogeneous equation

$$
\left\{(a+ı b)^{n}\right\}_{n=0}^{\infty} \text { and }\left\{(a-ı b)^{n}\right\}_{n=0}^{\infty}
$$

and the following real solutions

$$
\left\{r^{n} \cos n \varphi\right\}_{n=0}^{\infty} \text { and }\left\{r^{n} \sin n \varphi\right\}_{n=0}^{\infty}
$$

Linear Difference Equations with Constant Coefficients Examples

Linear Difference Equations with Constant Coefficients

A Quasi-polynomial.

A function of the form $f(n)=P(n) \beta^{n}$ is a quasi-polynomial.

Non-homogeneous Linear Difference Equations with Constant Coefficients

An Estimate of One Solution of a Non-homogeneous Equation.

Given a linear equation with constant coefficients

$$
a_{n+k}+c_{k-1} a_{n+k-1}+\ldots+c_{1} a_{n+1}+c_{0} a_{n}=b_{n},
$$

where b_{n} is a quasi-polynomial, $b_{n}=P(n) \lambda^{n}$.
We seek one of its solutions of the form

$$
\hat{a}_{n}=Q(n) n^{t} \beta^{n},
$$

where $Q(n)$ is a suitable polynomial of the same degree as $P(n)$, and t is the multiplicity of β as a root of the characteristic equation.

Non-homogeneous Linear Difference Equations with Constant Coefficients

How to Use the Estimate.

Once we have got an estimate $\left\{\hat{a}_{n}\right\}$ of one solution of the non-homogeneous equation, then

- we substitute it into the non-homogeneous equation,
- we get a system of linear equations for unknown coefficients of the polynomial $Q(n)$,
- if the estimate is correct, the system has a unique solution.

A Procedure for Solving Linear Difference Equations with Constant Coefficients.

The procedure

1) We calculate the general solution of the associated homogeneous equation.
2) For $b_{n}=P(n) \beta^{n}$ we made an estimate $\hat{a}_{n}=Q(n) n^{t} \beta^{n}$, where $Q(n)$ is a general polynomial of the same degree as $P(n), t$ is the multiplicity of β as a root of the characteristic equation.
3) \hat{a}_{n} is substituted into the non-homogeneous equation; comparing coefficients of the two (equal) polynomials we get the coefficients of $Q(n)$.

A Procedure for Solving Linear Difference Equations with Constant Coefficients.

4) General solution of the non-homogeneous equation is the sum of a general solution of the associated homogeneous equation and the solution \hat{a}_{n} from 3).
5) If initial conditions $a_{0}, a_{1}, \ldots, a_{k-1}$ are given, we substitute into the general solution $n=0, n=1, \ldots, n=k-1$ and obtain the unknown coefficients from the general solution of the associated homogeneous equation.

Examples

Example 1.

Solve the following difference equation

$$
\begin{equation*}
a_{n}=-2 n a_{n-1}+3 n(n-1) a_{n-2}, a_{0}=1, a_{1}=5 \tag{1}
\end{equation*}
$$

using the substitution $a_{n}=n!b_{n}$.

Examples

Example 2.

Form a linear differnce equation which has the following general solution

$$
\left\{a_{n}\right\}_{n=0}^{\infty}=\left\{\alpha+\beta(-1)^{n}+\gamma n(-1)^{n}\right\}_{n=0}^{\infty} ; \alpha, \beta, \gamma \in \mathbb{R} .
$$

A Procedure for Solving Linear Difference Equations with Constant Coefficients.

Example 3.

Solve the following difference equation

$$
\begin{equation*}
a_{n}-5 a_{n-1}+6 a_{n-2}=12 n, \quad a_{0}=25, a_{1}=36 \tag{2}
\end{equation*}
$$

Examples

Example 4.

Solve the following difference equation

$$
a_{n+2}-3 a_{n+1}+2 a_{n}=6 \cdot 2^{n}, a_{0}=2, a_{1}=6 .
$$

