Week 12
 Asymptotic Growth of Functions
 Discrete Math

Marie Demlová
http://math.fel.cvut.cz/en/people/demlova

May 5, 2022

Asymptotic Growth of Functions

Symbol \mathcal{O}.

Let $g(n)$ be a non-negative function. A non-negative function $f(n)$ is $\mathcal{O}(g(n))$ if there is a positive constant c and a natural number n_{0} such that

$$
f(n) \leq c g(n) \quad \text { for every } n \geq n_{0}
$$

$\mathcal{O}(g(n))$ is considered as a class of non-negative function $f(n)$:

$$
\mathcal{O}(g(n))=\left\{f(n) \mid \exists c>0, n_{0} \text { such that } f(n) \leq c g(n) \forall n \geq n_{0}\right\}
$$

Example. $3 n \in \mathcal{O}(n), 3 n \in \mathcal{O}\left(n^{2}\right)$.

Asymptotic Growth of Functions

Symbol Ω.

Let $g(n)$ be a non-negative function. A non-negative function $f(n)$ is $\Omega(g(n))$ if there is a positive constant c and a natural number n_{0} such that

$$
f(n) \geq c g(n) \quad \text { for every } n \geq n_{0} .
$$

$\Omega(g(n))$ is considered as a class of non-negative function $f(n)$:

$$
\Omega(g(n))=\left\{f(n) \mid \exists c>0, n_{0} \text { such that } f(n) \geq c g(n) \forall n \geq n_{0}\right\} .
$$

Example. $3 n \in \Omega(n), 3 n \in \Omega(\sqrt{n})$.
Fact. $f(n)$ is $\Omega(g(n))$ iff $g(n)$ is $\mathcal{O}(f(n))$.

Asymptotic Growth of Functions

Symbol Θ.

Let $g(n)$ be a non-negative function. A non-negative function $f(n)$ is $\Theta(g(n))$ if there are constants c_{1}, c_{2} and a natural number n_{0} such that

$$
c_{1} g(n) \leq f(n) \leq c_{2} g(n), \quad \forall n \geq n_{0} .
$$

$\Theta(g(n))$ is considered as a class of non-negative function $f(n)$:

$$
\left\{f(n) \mid \exists c_{1}, c_{2}>0, n_{0} ; \quad c_{1} g(n) \leq f(n) \leq c_{2} g(n), \forall n \geq n_{0}\right\}
$$

Fact. $f(n)$ is $\Theta(g(n))$ iff $f(n)$ is $\mathcal{O}(g(n))$ and $\Omega(g(n))$.

Asymptotic Growth of Functions

Proposition. $f(n) \in \Theta(g(n))$ iff $g(n) \in \Theta(f(n))$.

Examples.

- For every $a>1$ and $b>1$ we have

$$
\log _{a}(n) \in \Theta\left(\log _{b}(n)\right) .
$$

- The logarithm with base 2 is usually denoted by \lg, i.e. $\lg (n)=\log _{2}(n)$. It holds that

$$
\lg n!\in \Theta(n \lg n)
$$

Asymptotic Growth of Functions

Theorem (Gauss).
For every $n \geq 1$ it holds that

$$
n^{\frac{n}{2}} \leq n!\leq\left(\frac{n+1}{2}\right)^{n}
$$

Asymptotic Growth of Functions

Symbol small o. Given a non-negative function $g(n)$, we say that a non-negative function $f(n)$ is $o(g(n))$ if for every $c>0$ there is $n_{0} \in \mathbb{N}$ such that

$$
0 \leq f(n)<c g(n) \quad \text { for all } n \geq n_{0}
$$

$$
o(g(n))=\left\{f(n) \mid \forall c>0 \exists n_{0} \text { such that } 0 \leq f(n)<c g(n) \forall n>n_{0}\right\} .
$$

Asymptotic Growth of Functions

Symbol small ω. Given a non-negative function $g(n)$, we say that a non-negative function $f(n)$ is $\omega(g(n))$ if for every $c>0$ there is $n_{0} \in \mathbb{N}$ such that

$$
f(n)>c g(n) \quad \text { for all } n \geq n_{0}
$$

$$
\omega(g(n))=\left\{f(n) \mid \forall c>0 \exists n_{0} \text { such that } f(n)>c g(n) \leq 0 \forall n>n_{0}\right\} .
$$

Asymptotic Growth of Functions

Proposition. Given two non-negative functions $f(n)$ and $g(n)$, then

- $f(n) \in o(g(n))$ if and only if $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$;
- $f(n) \in \omega(g(n))$ if and only if $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$.
- If $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=a, a \in \mathbb{R}, a \neq 0$, then $f(n) \in \Theta(g(n))$.

Asymptotic Growth of Functions

Transitivity. Given three non-negative functions $f(n), g(n)$ and $h(n)$.

- If $f(n) \in \mathcal{O}(g(n))$ and $g(n) \in \mathcal{O}(h(n))$, then $f(n) \in \mathcal{O}(h(n))$.
- If $f(n) \in \Omega(g(n))$ and $g(n) \in \Omega(h(n))$, then $f(n) \in \Omega(h(n))$.
- If $f(n) \in \Theta(g(n))$ and $g(n) \in \Theta(h(n))$, then $f(n) \in \Theta(h(n))$.

Reflexivity.

For all non-negative functions $f(n)$, we have: $f(n) \in \mathcal{O}(f(n))$, $f(n) \in \Omega(f(n))$ and $f(n) \in \Theta(f(n))$.

Estimations of functions

Proposition.

Given non negative function $f(n)$ which is non decreasing. If $f\left(\frac{n}{2}\right) \in \Theta(f(n))$ then

$$
\sum_{i=1}^{n} f(i) \in \Theta(n f(n))
$$

Remark. The above property has e.g. $f(n)=n^{d}$ for natural number $d \geq 1$, but the function $f(n)=2^{n}$ not.
For $\sum_{i=1}^{n} 2^{i}$ we can use mathematical induction and show

$$
\sum_{i=1}^{n} 2^{i} \leq c 2^{n}
$$

Estimations of functions

Another possibility

Let $f(n)$ be a positive increasing function. Then

$$
\int_{0}^{n} f(x) d x \leq \sum_{i=1}^{n} f(i) \leq \int_{1}^{n+1} f(x) d x
$$

Let $f(n)$ be a positive decreasing function. Then

$$
\int_{1}^{n+1} f(x) d x \leq \sum_{i=1}^{n} f(i) \leq \int_{0}^{n} f(x) d x
$$

