Week 12 Asymptotic Growth of Functions Discrete Math

Marie Demlová http://math.fel.cvut.cz/en/people/demlova

May 5, 2022

Symbol \mathcal{O} .

Let g(n) be a non-negative function. A non-negative function f(n) is $\mathcal{O}(g(n))$ if there is a positive constant c and a natural number n_0 such that

$$f(n) \leq c g(n)$$
 for every $n \geq n_0$.

 $\mathcal{O}(g(n))$ is considered as a class of non-negative function f(n):

 $\mathcal{O}(g(n)) = \{f(n) \mid \exists c > 0, n_0 \text{ such that } f(n) \leq c g(n) \ \forall n \geq n_0\}.$

Example. $3n \in \mathcal{O}(n)$, $3n \in \mathcal{O}(n^2)$.

Symbol Ω .

Let g(n) be a non-negative function. A non-negative function f(n) is $\Omega(g(n))$ if there is a positive constant c and a natural number n_0 such that

$$f(n) \ge c g(n)$$
 for every $n \ge n_0$.

 $\Omega(g(n))$ is considered as a class of non-negative function f(n):

 $\Omega(g(n)) = \{f(n) \mid \exists c > 0, n_0 \text{ such that } f(n) \ge c g(n) \ \forall n \ge n_0\}.$

Example. $3n \in \Omega(n)$, $3n \in \Omega(\sqrt{n})$.

Fact. f(n) is $\Omega(g(n))$ iff g(n) is $\mathcal{O}(f(n))$.

Symbol Θ .

Let g(n) be a non-negative function. A non-negative function f(n)is $\Theta(g(n))$ if there are constants c_1 , c_2 and a natural number n_0 such that

$$c_1 g(n) \leq f(n) \leq c_2 g(n), \ \forall n \geq n_0.$$

 $\Theta(g(n))$ is considered as a class of non-negative function f(n):

$$\{f(n) \mid \exists c_1, c_2 > 0, n_0; \ c_1 g(n) \le f(n) \le c_2 g(n), \ \forall n \ge n_0\}.$$

Fact. f(n) is $\Theta(g(n))$ iff f(n) is $\mathcal{O}(g(n))$ and $\Omega(g(n))$.

Proposition. $f(n) \in \Theta(g(n))$ iff $g(n) \in \Theta(f(n))$.

Examples.

For every a > 1 and b > 1 we have

$$\log_a(n) \in \Theta(\log_b(n)).$$

The logarithm with base 2 is usually denoted by lg, i.e.
lg(n) = log₂(n). It holds that

 $\lg n! \in \Theta(n \lg n).$

Asymptotic Growth of Functions Estimations of functions

Asymptotic Growth of Functions

Theorem (Gauss).

For every $n \ge 1$ it holds that

$$n^{\frac{n}{2}} \leq n! \leq \left(\frac{n+1}{2}\right)^n$$

Symbol small *o*. Given a non-negative function g(n), we say that a non-negative function f(n) is o(g(n)) if for every c > 0 there is $n_0 \in \mathbb{N}$ such that

$$0 \leq f(n) < c g(n)$$
 for all $n \geq n_0$.

 $o(g(n)) = \{f(n) \mid \forall c > 0 \exists n_0 \text{ such that } 0 \leq f(n) < c g(n) \ \forall n > n_0\}.$

Symbol small ω . Given a non-negative function g(n), we say that a non-negative function f(n) is $\omega(g(n))$ if for every c > 0 there is $n_0 \in \mathbb{N}$ such that

$$f(n) > c g(n)$$
 for all $n \ge n_0$.

 $\omega(g(n)) = \{f(n) \mid \forall c > 0 \exists n_0 \text{ such that } f(n) > c g(n) \le 0 \ \forall n > n_0\}.$

Proposition. Given two non-negative functions f(n) and g(n), then

▶
$$f(n) \in o(g(n))$$
 if and only if $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$;

►
$$f(n) \in \omega(g(n))$$
 if and only if $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$.

► If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = a$$
, $a \in \mathbb{R}$, $a \neq 0$, then $f(n) \in \Theta(g(n))$.

Transitivity. Given three non-negative functions f(n), g(n) and h(n).

- ▶ If $f(n) \in \mathcal{O}(g(n))$ and $g(n) \in \mathcal{O}(h(n))$, then $f(n) \in \mathcal{O}(h(n))$.
- ▶ If $f(n) \in \Omega(g(n))$ and $g(n) \in \Omega(h(n))$, then $f(n) \in \Omega(h(n))$.
- ▶ If $f(n) \in \Theta(g(n))$ and $g(n) \in \Theta(h(n))$, then $f(n) \in \Theta(h(n))$.

Reflexivity.

For all non-negative functions f(n), we have: $f(n) \in \mathcal{O}(f(n))$, $f(n) \in \Omega(f(n))$ and $f(n) \in \Theta(f(n))$.

Estimations of functions

Proposition.

Given non negative function f(n) which is non decreasing. If $f(\frac{n}{2}) \in \Theta(f(n))$ then

$$\sum_{i=1}^n f(i) \in \Theta(nf(n)).$$

Remark. The above property has e.g. $f(n) = n^d$ for natural number $d \ge 1$, but the function $f(n) = 2^n$ not.

For $\sum_{i=1}^{n} 2^{i}$ we can use mathematical induction and show

$$\sum_{i=1}^n 2^i \le c \, 2^n.$$

Estimations of functions

Another possibility

Let f(n) be a positive increasing function. Then

$$\int_0^n f(x) \, dx \le \sum_{i=1}^n f(i) \le \int_1^{n+1} f(x) \, dx.$$

Let f(n) be a positive decreasing function. Then

$$\int_{1}^{n+1} f(x) \, dx \leq \sum_{i=1}^{n} f(i) \leq \int_{0}^{n} f(x) \, dx$$