1 Lab 1 - February 17, 2022

1.1 Which conditions must be satisfied by sets A, B, C to guarantee that:
a) $(A \backslash C) \backslash B=A \backslash(C \backslash B)$;
b) $A \cap(B \cup C)=(A \cap B) \cup C$;
c) $A \cup(B \oplus C)=(A \cup B) \oplus(A \cup C)$;
d) $A \backslash(B \cup C)=(A \backslash B) \backslash C$;
e) $(A \cap B) \backslash C=A \cap(B \backslash C)$;
f) $A \cap(B \backslash C)=(A \backslash C) \cap B$;
g) $A \cup(B \backslash C)=(A \cup B) \backslash(A \cup C)$.
1.2 Decide whether or not the following assertions hold; give arguments for your answers.
a) $A \times B=\emptyset$ if and only if $A=\emptyset$ or $B=\emptyset$.
b) For all sets A, B we have $A \times B=B \times A$.
c) For all sets A, B, C the following holds: If $B \subseteq C$, then $A \times B \subseteq A \times C$.
d) If $A \times B \subseteq A \times C$, then $B \subseteq C$.
e) $A \times(B \cup C)=(A \times B) \cup(A \times C)$.
f) $A \times(B \cap C)=(A \times B) \cap(A \times C)$.
g) $(B \oplus C) \times A=(B \times A) \oplus(C \times A)$.
h) If $A \oplus B=A \oplus C$, then $B=C$.
i) $A \backslash(B \oplus C)=(A \backslash B) \oplus(A \backslash C)$.
1.3 List all the subsets of the set $\{1,2,3,4\}$. How many are there?
1.4 There are 200 students in a school, 140 of them can speak French, 80 students can speak German, and 20 students do not know either of these languages. How many students speak both languages?
1.5 Let $A=\{0,1,2\}$ and $B=\{a, b\}$. List all mappings from A into B. How many maps are there? Which of them are injective? Which of them are surjective?
1.6 Find an example of a mapping $f: \mathbb{N} \longrightarrow \mathbb{N}$ such that
a) f is injective but not surjective,
b) f is surjective but not injective,
c) f is injective and surjective,
d) f is neither injective nor surjective.
1.7 Show that the rule

$$
(m, n) \mapsto 2^{m}(2 n+1)-1 \quad(m, n \in \mathbb{N})
$$

defines an injective mapping of the set $\mathbb{N} \times \mathbb{N}$ onto \mathbb{N}.
1.8 Show that the set of all binary words is countable. (A binary word is a finite sequence of 0's and 1's.)
1.9
a) Show that any two non-empty open intervals (a, b) and (c, d) of real numbers have the same cardinality.
b) Show that the set \mathbb{R} and the set of all positive real numbers $(0, \infty)$ have the same cardinality.

