1 Lab 1 – February 17, 2022

- **1.1** Which conditions must be satisfied by sets A, B, C to guarantee that:
 - a) $(A \setminus C) \setminus B = A \setminus (C \setminus B);$
 - b) $A \cap (B \cup C) = (A \cap B) \cup C;$
 - c) $A \cup (B \oplus C) = (A \cup B) \oplus (A \cup C);$
 - d) $A \setminus (B \cup C) = (A \setminus B) \setminus C;$
 - e) $(A \cap B) \setminus C = A \cap (B \setminus C);$
 - f) $A \cap (B \setminus C) = (A \setminus C) \cap B;$
 - g) $A \cup (B \setminus C) = (A \cup B) \setminus (A \cup C).$
- **1.2** Decide whether or not the following assertions hold; give arguments for your answers.
 - a) $A \times B = \emptyset$ if and only if $A = \emptyset$ or $B = \emptyset$.
 - b) For all sets A, B we have $A \times B = B \times A$.
 - c) For all sets A, B, C the following holds: If $B \subseteq C$, then $A \times B \subseteq A \times C$.
 - d) If $A \times B \subseteq A \times C$, then $B \subseteq C$.
 - e) $A \times (B \cup C) = (A \times B) \cup (A \times C).$
 - f) $A \times (B \cap C) = (A \times B) \cap (A \times C).$
 - g) $(B \oplus C) \times A = (B \times A) \oplus (C \times A).$
 - h) If $A \oplus B = A \oplus C$, then B = C.
 - i) $A \setminus (B \oplus C) = (A \setminus B) \oplus (A \setminus C)$.
- **1.3** List all the subsets of the set $\{1, 2, 3, 4\}$. How many are there?

1.4 There are 200 students in a school, 140 of them can speak French, 80 students can speak German, and 20 students do not know either of these languages. How many students speak both languages?

1.5 Let $A = \{0, 1, 2\}$ and $B = \{a, b\}$. List all mappings from A into B. How many maps are there? Which of them are injective? Which of them are surjective?

1.6 Find an example of a mapping $f : \mathbb{N} \longrightarrow \mathbb{N}$ such that

- a) f is injective but not surjective,
- b) f is surjective but not injective,
- c) f is injective and surjective,
- d) f is neither injective nor surjective.

1.7 Show that the rule

$$(m,n) \mapsto 2^m (2n+1) - 1 \quad (m,n \in \mathbb{N})$$

defines an injective mapping of the set $\mathbb{N} \times \mathbb{N}$ onto \mathbb{N} .

Marie Demlova: Discrete Mathematics

1.8 Show that the set of all binary words is countable. (A binary word is a finite sequence of 0's and 1's.)

1.9

- a) Show that any two non-empty open intervals (a, b) and (c, d) of real numbers have the same cardinality.
- b) Show that the set $\mathbb R$ and the set of all positive real numbers $(0,\infty)$ have the same cardinality.