2 Lab 2 – February 24, 2022

- **2.1** Write the following relations on a set *A* as sets of ordered pairs:
 - a) A is the set of all subsets of the set $\{1, 2\}$, relation R is "to be a proper subset". This means that for $X, Y \in A$ we have X R Y if and only if $X \subseteq Y$ and $X \neq Y$.
 - b) $A = \{2, 4, 5, 8, 45, 60\}, R$ is the relation of divisibility; i.e. m R n if and only if m divides n.
- **2.2** A relation R on a closed interval A = [0, 4] is given by:

x R y if and only if $x^2 + y^2 + 7 \le 4x + 4y$.

Decide a) whether $2(R \circ R)2$ and b) whether $0(R^{-1} \circ R)3$.

2.3 A relation R on a closed interval A = [0, 1] is given by: x R y if and only if $y = 2|x - \frac{1}{2}|$. Sketch in a plane (as a set of ordered pairs) the relations R, R^{-1} and $R \circ R^{-1}$.

2.4 Give the properties of the following relations on the set of all natural numbers \mathbb{N} :

- a) m R n if and only if m divides n;
- b) m R n if and only if $m + n \ge 50$;
- c) m R n if and only if m + n is even;
- d) m R n if and only if $m \cdot n$ is even;
- e) m R n if and only if $m = n^k$ for some $k \in \mathbb{N}$;
- f) m R n if and only if m + n is a multiple of 3;
- g) m R n if and only if m > n.

2.5 In the following examples S is a relation on a set A and x, y are elements of set A. Decide whether S is reflexive, symmetric, antisymmetric, transitive. Is it an equivalence, an order relation?

- a) A is the set of all complex numbers, x S y if and only if |x| = |y|.
- b) A is the set of all complex numbers, x S y if and only if |x| < |y|.
- c) A is the set of all real numbers, x S y if and only if x y is a rational number.
- d) A is the set of all triangles of a given plane, two triangles are related in S if and only if they are congruent.
- e) A is the set of all triangles of a given plane, two triangles are related in S if and only if they are similar.
- f) A is the set of all subsets of a set B, two subsets X, Y of the set B are related in S if and only if they have the same cardinality; i.e., if and only if there exists an injective mapping of X onto Y.

2.6 Given two relations R and S from a set A into a set B. Decide whether the following is true:

- a) $(R \cup S)^{-1} = R^{-1} \cup S^{-1};$
- b) $(R \cap S)^{-1} = R^{-1} \cap S^{-1}$.

- **2.7** Given two relations R and S on a set A. Decide whether it is true:
 - a) If R and S are reflexive, then so is $\,R\circ S\,.\,$
 - b) If R and S are symmetric, then so is $R\circ S\,.$
 - c) If R and S are antisymmetric, then so is $\,R\circ S\,.\,$
 - d) If R and S are transitive, then so is $R \circ S$.