2 Lab 2 - February 24, 2022

2.1 Write the following relations on a set A as sets of ordered pairs:
a) A is the set of all subsets of the set $\{1,2\}$, relation R is "to be a proper subset". This means that for $X, Y \in A$ we have $X R Y$ if and only if $X \subseteq Y$ and $X \neq Y$.
b) $A=\{2,4,5,8,45,60\}, R$ is the relation of divisibility; i.e. $m R n$ if and only if m divides n.
2.2 A relation R on a closed interval $A=[0,4]$ is given by:

$$
x R y \quad \text { if and only if } \quad x^{2}+y^{2}+7 \leq 4 x+4 y
$$

Decide a) whether $2(R \circ R) 2$ and b$)$ whether $0\left(R^{-1} \circ R\right) 3$.
2.3 A relation R on a closed interval $A=[0,1]$ is given by: $x R y$ if and only if $y=2\left|x-\frac{1}{2}\right|$. Sketch in a plane (as a set of ordered pairs) the relations R, R^{-1} and $R \circ R^{-1}$.
2.4 Give the properties of the following relations on the set of all natural numbers \mathbb{N} :
a) $m R n$ if and only if m divides n;
b) $m R n$ if and only if $m+n \geq 50$;
c) $m R n$ if and only if $m+n$ is even;
d) $m R n$ if and only if $m \cdot n$ is even;
e) $m R n$ if and only if $m=n^{k}$ for some $k \in \mathbb{N}$;
f) $m R n$ if and only if $m+n$ is a multiple of 3 ;
g) $m R n$ if and only if $m>n$.
2.5 In the following examples S is a relation on a set A and x, y are elements of set A. Decide whether S is reflexive, symmetric, antisymmetric, transitive. Is it an equivalence, an order relation?
a) A is the set of all complex numbers, $x S y$ if and only if $|x|=|y|$.
b) A is the set of all complex numbers, $x S y$ if and only if $|x|<|y|$.
c) A is the set of all real numbers, $x S y$ if and only if $x-y$ is a rational number.
d) A is the set of all triangles of a given plane, two triangles are related in S if and only if they are congruent.
e) A is the set of all triangles of a given plane, two triangles are related in S if and only if they are similar.
f) A is the set of all subsets of a set B, two subsets X, Y of the set B are related in S if and only if they have the same cardinality; i.e., if and only if there exists an injective mapping of X onto Y.
2.6 Given two relations R and S from a set A into a set B. Decide whether the following is true:
a) $(R \cup S)^{-1}=R^{-1} \cup S^{-1}$;
b) $(R \cap S)^{-1}=R^{-1} \cap S^{-1}$.
2.7 Given two relations R and S on a set A. Decide whether it is true:
a) If R and S are reflexive, then so is $R \circ S$.
b) If R and S are symmetric, then so is $R \circ S$.
c) If R and S are antisymmetric, then so is $R \circ S$.
d) If R and S are transitive, then so is $R \circ S$.

