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4.1 Prove using mathematical induction that for every n > 1 we have
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4.2 Using mathematical induction prove that for every n > 2 we have
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4.3 Using mathematical induction prove that for every n > 2 we have
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4.4 Let r > 2. Using mathematical induction prove that for every n > 1 and every natural
numbers ag, a1,...,a,_1 where a; < r for ¢ =0,...,n — 1, it holds that
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4.5  Using mathematical induction prove that for the Fibonacciho sequence {F(n)}5, it
holds: "
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for all n > 0.

Fibonacciho sequence is defined by: F(0) =0, F(1) =1, and F(n+2) = F(n+ 1) + F(n).

4.6 Using mathematical induction prove that for all n > 1 and arbitrary real numbers z;,
i =1,...n, it holds that
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4.7 Using mathematical induction prove that there is a constant d, d > 0, for which

f::ai <d-3".
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