4 Lab 4 - March 10, 2022

4.1 Prove using mathematical induction that for every $n \geq 1$ we have

$$
\frac{1}{2 n} \leq \frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n-1)}{2 \cdot 4 \cdot 6 \cdot \ldots \cdot 2 n}
$$

4.2 Using mathematical induction prove that for every $n \geq 2$ we have

$$
\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2 n}>\frac{1}{2}
$$

4.3 Using mathematical induction prove that for every $n \geq 2$ we have

$$
\sum_{k=1}^{n} \frac{1}{\sqrt{k}}>\sqrt{n}
$$

4.4 Let $r \geq 2$. Using mathematical induction prove that for every $n \geq 1$ and every natural numbers $a_{0}, a_{1}, \ldots, a_{n-1}$ where $a_{i}<r$ for $i=0, \ldots, n-1$, it holds that

$$
a_{0}+a_{1} r+a_{2} r^{2}+\ldots+a_{n-1} r^{n-1}<r^{n}
$$

4.5 Using mathematical induction prove that for the Fibonacciho sequence $\{F(n)\}_{n=0}^{\infty}$ it holds:

$$
F(n+2) \geq\left(\frac{3}{2}\right)^{n}
$$

for all $n \geq 0$.
Fibonacciho sequence is defined by: $F(0)=0, F(1)=1$, and $F(n+2)=F(n+1)+F(n)$.
4.6 Using mathematical induction prove that for all $n \geq 1$ and arbitrary real numbers x_{i}, $i=1, \ldots n$, it holds that

$$
\left|\sum_{i=1}^{n} x_{i}\right| \leq \sum_{i=1}^{n}\left|x_{i}\right|
$$

4.7 Using mathematical induction prove that there is a constant $d, d>0$, for which

$$
\sum_{i=1}^{n} 3^{i} \leq d \cdot 3^{n}
$$

