8 Lab 8 – April 7, 2022

8.1 On the set of all real numbers \mathbb{R} we define an operation \circ by

$$x \circ y = \frac{x+y}{2}.$$

Decide whether (\mathbb{R}, \circ) forms a semigroup.

8.2 Given a non empty set A. Define an operation \circ on A by

$$x \circ y = x$$
 for every $x, y \in A$.

Decide whether (A, \circ) is a semigroup and whether it has a neutral element.

8.3 Given a non empty set U. Consider the set $\mathcal{P}(U)$ of all its subsets. On $A = \mathcal{P}(U)$ define two binary operations: intersection \cap and union \cup . Decide whether (A, \cap) and (A, \cup) form semigroups, and whether they have a neutral element.

8.4 On the set $A = \mathbb{Q} \setminus \{0\}$ an operation \star is given by

$$x \star y = \frac{1}{3}xy.$$

Show that (A, \star) is a group.

8.5 On the set $A = \mathbb{Q} \setminus \{0\}$ an operation \circ is given by

$$x \circ y = \frac{1}{\frac{1}{x} + \frac{1}{y}}.$$

Decide whether (A, \circ) is a semigroup, and whether it has a neutral element.

8.6 Calculate 5^{676} in $(\mathbb{Z}_{306}, \cdot, 1)$ and use it to find all elements $x \in \mathbb{Z}_{306}$ for which

$$5^{676} \cdot x = 3(2x+1)$$
 in $(\mathbb{Z}_{306}, \cdot, 1)$.

8.7 In \mathbb{Z}_{148} the following equation with parameter p is given

$$p\,x - 5^{509} = 9\,x + 7.$$

- a) Find all parameters p for which the equation above has a unique solution.
- b) Solve the equation above for three such parameters (from a)).