
1

Chapter 1

Introduction

1.1 Basic notions

1.1.1 Algorithm. By an algorithm, we mean a well defined finite procedure, i.e. a sequence of
steps, such that for a given input (values of an instance) it produces an output (solution).

1.1.2 Problem. A problem is a general specification of a relationship input/solution. By an
instance of a problem U , we mean an assignment values of all parameters of which the problem
consists. In other words, an instance of a problem is a correct example of assignment.

1.1.3 We say that an algorithm A solves a problem U if for every input (every instance of U)
it gives a correct solution.

Note that the above statement means that every algorithm which solves a problem must
terminate for every input. It means that an algorithm which does not terminate for an input
cannot solve any problem.

1.1.4 Time complexity. There are two different ways to measure time complexity of algo-
rithms.

1. Worst case analysis. It is the asymptotic estimation T (n) of the upper bound for the length
of time that is needed for any instance of size n.

2. Average complexity. It is the asymptotic estimation Taver(n) of the average length of time
that is needed to solve an instance of size n.

1.2 Asymptotic growth of functions

1.2.1 Symbol O. Given a nonnegative function g(n), we say that a nonnegative function f(n)
is O(g(n)) if there exist a positive constant c and a natural number n0 such that

f(n) ≤ c g(n) for all n ≥ n0.

We can consider O(g(n)) to be the class of all nonnegative functions f(n):

O(g(n)) = {f(n) | ∃c > 0, n0 such that f(n) ≤ c g(n) ∀n ≥ n0}.

1.2.2 Symbol Ω. Given a nonnegative function g(n), we say that a nonnegative function f(n)
is Ω(g(n)) if there exists a positive constant c and a natural number n0 such that

f(n) ≥ c g(n) for all n ≥ n0.

We can consider Ω(g(n)) to be the class of all nonnegative functions f(n):

Ω(g(n)) = {f(n) | ∃c > 0, n0 such that f(n) ≥ c g(n) ∀n ≥ n0}.

March 11, 2020, 8:19

2 [200311-0819] Chapter 1. Introduction

1.2.3 Remark. It holds that a function f(n) is Ω(g(n)) iff the function g(n) is O(f(n)).

1.2.4 Symbol Θ. Given a nonnegative function g(n), we say that a non negative function f(n)
is Θ(g(n)) if there exists positive constants c1, c2 and a natural number n0 such that

c1 g(n) ≤ f(n) ≤ c2 g(n) for all n ≥ n0.

We can consider Θ(g(n)) to be the class of all nonnegative functions f(n):

Θ(g(n)) = {f(n) | ∃c1, c2 > 0, n0 such that c1 g(n) ≤ f(n) ≤ c2 g(n) ∀n ≥ n0}.

1.2.5 Remark. We have f(n) is Θ(g(n)) if and only if f(n) is both O(g(n)) and Ω(g(n)).

1.2.6 Symbol small o. Given a nonnegative function g(n). We say that a nonnegative function
f(n) is o(g(n)) if for every positive constant c there exists a natural number n0 such that

0 ≤ f(n) < c g(n) for all n ≥ n0.

We can consider o(g(n)) to be the class of all nonnegative functions f(n):

o(g(n)) = {f(n) | ∀ c > 0 ∃n0 such that 0 ≤ f(n) < c g(n) ∀n > n0}.

1.2.7 Remark. A nonnegative function f(n) is O(g(n)) roughly means that the function f(n)
does not grow asymptotically more than g(n). On the other hand, to say that a nonnegative
function f(n) is o(g(n)) roughly means that the function f(n) grows asymptotically less than the
function g(n).

1.2.8 Symbol small ω. Given a nonnegative function g(n), we say that a nonnegative function
f(n) is ω(g(n)) if for every positive constant c there exists a natural number n0 such that

0 ≤ c g(n) < f(n) for all n ≥ n0.

We can consider ω(g(n)) to be a class of all nonnegative functions f(n):

ω(g(n)) = {f(n) | ∀ c > 0 there is n0 such that 0 ≤ c g(n) < f(n) ∀n > n0}.

1.2.9 Remark. Roughly speaking, we say that a nonnegative function f(n) is Ω(g(n)) means
that the function f(n) grows asymptotically at least as the function g(n). On the other hand, f(n)
is ω(g(n)) means roughly that the function f(n) grows asymptotically more than the function g(n).

1.2.10 Notation. Symbols O,Ω,Θ, o, ω represent classes of functions so we will write f(n) ∈
O(g(n)); similarly for other symbols Ω.Θ, o, ω.

1.2.11 Proposition. Given two nonnegative functions f(n) and g(n), then

• f(n) ∈ o(g(n)) if and only if limn→∞
f(n)
g(n) ∈ 0;

• f(n) ∈ ω(g(n)) if and only if limn→∞
f(n)
g(n) =∞.

Justification. Let us write what it meas that limn→∞
f(n)
g(n) = 0:

∀ ε > 0 ∃n0 ∈ N such that ∀n ≥ n0 it holds |f(n)

g(n)
| < ε.

The fact | f(n)
g(n) | < ε can be rewritten as f(n) < ε g(n). Denote c := ε, than we get that f(n) is in

o(g(n)).

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

1.2. Asymptotic growth of functions [200311-0819] 3

3) Analogously, limn→∞
f(n)
g(n) = a, a > 0, means that

∀ ε > 0 ∃n0 ∈ N such that ∀n ≥ n0 it holds |f(n)

g(n)
− a| < ε.

Equivalently, (a− ε)g(n) < f(n) < (a+ ε)g(n). Choose ε = a
2 , we get

a

2
g(n) < f(n) <

3a

2
g(n);

hence f(n) is Θ(g(n)).

1.2.12 Transitivity. Given three nonnegative functions f(n), g(n) and h(n).

1. If f(n) ∈ O(g(n)) and g(n) ∈ O(h(n)), then f(n) ∈ O(h(n)).

2. If f(n) ∈ Ω(g(n)) and g(n) ∈ Ω(h(n)), then f(n) ∈ Ω(h(n)).

3. If f(n) ∈ Θ(g(n)) and g(n) ∈ Θ(h(n)), then f(n) ∈ Θ(h(n)).

1.2.13 Reflexivity. For all nonnegative functions f(n), we have: f(n) ∈ O(f(n)), f(n) ∈
Ω(f(n)) and f(n) ∈ Θ(f(n)).

1.2.14 Proposition. f(n) ∈ Θ(g(n)) if and only if g(n) ∈ Θ(f(n)).

1.2.15 Examples.

1. For every a > 1 and b > 1, we have

loga(n) ∈ Θ(logb(n)).

2. It holds that

lg n! ∈ Θ(n lg n).

The second part of the above example follows from the following theorem.

1.2.16 Theorem (Gauss). For every n ≥ 1

n
n
2 ≤ n! ≤

(
n+ 1

2

)n

.

Justification. We will use the fact that for every two positive numbers a, b it holds that
a+b

2 ≥
√
ab.

Let us write (n!)2 as

(n!)2 = n (n− 1) . . . 2 1 1 2 . . . (n− 1)n =

n∏
i=1

(n− i+ 1)i.

Therefore

n! =

n∏
i=1

√
(n− i+ 1)i ≤

n∏
i=1

n+ 1

2
=

(
n+ 1

2

)n

,

since for every i we have
√

(n− i+ 1)i ≤ n−i+1+i
2 . We have shown the first estimate.

On the other hand, for every i we have n ≤ (n − i + 1)i, hence nn ≤ (n!)2. Since the both
expressions are positive, we can form their square root and get n

n
2 ≤ n!.

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

4 [200311-0819] Chapter 1. Introduction

1.2.17 Theorem. Given a non negative function f(n) which is non decreasing. If f(n
2) ∈

Θ(f(n)), then
n∑

i=1

f(i) ∈ Θ(n f(n)).

Justification. The fact that
∑n

i=1 f(i) ∈ O(n f(n)) is clear: f is non decreasing.

Further, there is a positive constant c such that for sufficiently big n we have c f(n) ≤ f(n
2).

Hence
n∑

i=1

f(i) ≥ f(
n

2
) + . . .+ f(n) ≥ n

2
c f(n).

This means that
∑n

i=1 f(i) ≥ c
2 n f(n) and therefore

∑n
i−1 f(i) ∈ Ω(n f(n)).

1.2.18 Remark. The property of the theorem above has for example f(n) = nd for a natural
number d ≥ 1. On the other hand the function f(n) = 2n does not fulfill it. To find an asymptotic
growth of

∑n
i=1 2i the following method can be used:

Using mathematical induction we show that there is a constant c > 0 such that

n∑
i=1

2i ≤ c 2n.

1. Basic step. We know that
∑1

i=1 2i = 2 and that 2 ≤ c 2 for every constant c ≥ 1.

2. Induction step. Assume that
∑n

i=1 2i ≤ c 2n. Then

n+1∑
i=1

2i =

n∑
i=1

2i + 2n+1 ≤ c 2n + 2n+1 =

(
1

2
+

1

c

)
c 2n+1.

Now, to finish the proof it suffices to find c such that 1
2 + 1

c ≤ 1. And this is equivalent with the
condition that c ≥ 2.

1.2.19 There is another way how to deal with finding an asymptotic growth of functions of the
type

n∑
i=1

f(i).

We show it only for non decreasing functions f(n) (for non increasing you have to change the
inequalities): ∫ n

0

f(x) dx ≤
n∑

i=1

f(i) ≤
∫ n+1

1

f(x) dx.

If the integral is improper, it is useful to look for an estimate for
∑n

i=2 f(i) only.

1.3 Solving Recurrences

1.3.1 Theorem — Master Theorem. Given natural numbers a ≥ 1, b > 1 and a function
f(n), a recurrence T (n) is defined for all natural numbers by with

T (n) = a T (
n

b
) + f(n),

where n
b means either bnb c or dnb e.

1. If f(n) ∈ O(nlogb a−ε) for a constant ε > 0, then T (n) ∈ Θ(nlogb a).

2. If f(n) ∈ Θ(nlogb a), then T (n) ∈ Θ(nlogb a lg n).

3. If f(n) ∈ Ω(nlogb a+ε) for a constant ε > 0 and a f(n
b) ≤ c f(n) for a constant c < 1 given

sufficiently large n, then T (n) ∈ Θ(f(n)).

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

1.3. Solving Recurrences [200311-0819] 5

1.3.2 Remark. There are some examples that are not solved by the Master Theorem:

1. We have f(n) ∈ O(nlogb a) but there is no ε > 0 so that f(n) ∈ O(nlogb a−ε). In other words,
f(n) is not polynomially smaller than O(nlogb a).

2. We have f(n) ∈ Ω(nlogb a) but there is no ε > 0 so that f(n) = O(nlogb a+ε) (in other words,
f(n) is not polynomially greater than O(nlogb a)) or there is not constant c < 1 for which
a f(n

b) ≤ c f(n).

1.3.3 Proposition. If f(n) ∈ Θ(nlogb a lgk n) for k ≥ 0, then for T (n) given by

T (n) = a T (
n

b
) + f(n),

we have: T (n) ∈ Θ(nlogb a lgk+1 n).

1.3.4 Solving recurrences using recursion trees. There is another method how to solve
recurrences. We show it on the two following examples. The first one is also solvable by Master
theorem, to the second one the Master theorem is not applicable.

1.3.5 Example 1. Solve the following recurrence

T (n) = 3T
(n

4

)
+ n2.

Solution: We form the tree by levels so that it describes the recursion of T (n). In the 0 level for
a computation of T (n) we need n2 steps necessary to compute T (n) (if we already have T

(
n
4

)
).

In the first level the computation of T (n) breaks down to three computations T (n
4). For this

we need 3 · (n
4)2 = 3

16 n
2.

When we go from level i to level i + 1 every node has three successors and each needs one
sixteenth of the previous one. Therefor the sum in the i level is equal to (3

16)i n2.

The last level has nodes denoted by T (1) and it is the end of recursion. The number of levels
corresponds to dlog4 ne. Moreover, in the last level there is 3log4 n = nlog4 3 values T (1). Hence we
have

T (n) =

dlog4 ne∑
i=0

(
3

16

)i

n2 + Θ(nlog4 3).

Thus

T (n) < n2
∞∑
i=0

(
3

16

)i

+ Θ(nlog4 3) = n2 1

1− 3
16

+ Θ(nlog4 3) =
16

13
n2 + Θ(nlog4 3).

We have got T (n) ∈ Θ(n2).

1.3.6 Example 2. Solve

T (n) = T
(n

3

)
+ T

(
2n

3

)
+ n.

Solution: As in the previous example, we will form levels of the recursive tree of T (n). In the 0
level with T (n) we have n steps that are necessary for a computation of T (n) (if we know T (n

3)
and T (2n

3).

In the first level, T (n) breaks to computations of T (n
3) and T (2n

3). For this we need n
3 + 2n

3
steps.

In the second level, T (n
3) breaks to T (n

9) and T (2n
9); node T (2n

3) breaks to T (2n
9) and T (4n

9).
The sum at the level 2 is then

n

9
+

2n

9
+

2n

9
+

4n

9
= n.

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

6 [200311-0819] Chapter 1. Introduction

The last non empty level corresponds to 2in
3i ; it ends if and only if 2in

3i = 1. (As the first one, it
ends the branch when n

3i = 1.) Hence the sum in levels in between are smaller that n. The last
non empty level corresponds to such i for which

n→ 2n

3
→ 22n

32
→ . . .→ 2in

3i
= 1,

i.e. (2
3)in = 1, so n = (3

2)i and i = log 3
2
n.

Therefore
T (n) ≤ n log 3

2
n, hence T (n) ∈ O(n lg n).

1.3.7 Amortized complexity. It is an average of the number of steps of n consecutive
operations/instructions in the worst case analysis. If n repetitions in the worst case needs time
O(T (n)) then one of them needs time O(T (n))/n, and it is the amortized complexity of one
operation/instruction.

There are three methods how to compute the amortized complexity.

• The first one is Aggregate Method — we proceed just according the definition.

• The second one is Accounting Method — to each operation/instruction a credit is given. If
the operation/instruction needs less than the credit, the remaining part of the credit can be
used later when more than one credit is needed. The necessary condition is that any time
there must be enough credits to cover each operation/instruction.

• The third one is Potential Method. Denote by Di situation after the i-the instruction. So we
have a sequence of n situations (usually of data structure) D0, . . . , Dn−1. To every situation
Di a non negative number is associated, so called potential, Φ(Di). Denote by ci the actual
price of the transition from Di−1 to Di. Then the amortized price ĉi corresponding to Di is
defined by

ĉi = ci + Φ(Di)− Φ(Di−1).

Then we have

n∑
i=1

ĉi =

n∑
i=1

(ci + Φ(Di)− Φ(Di−1)) =

n∑
i=1

ci + Φ(Dn)− Φ(D0).

Hence we get conditions on potentials, for every i necessarily Φ(Di) ≥ Φ(D0).

1.3.8 During the lecture, calculation of amortized complexity will be shown using all three
methods on the example of the following pseudo code

Increment(A)
1. i = 0
2. while i < A.length a A[i] = 1
3. A[i] := 0
4. i := i+ 1
5. if i < A.length
6. A[i] := 1

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

7

Chapter 2

Time Complexity and Correctness
of Algorithms

2.1 Time complexity of algorithms

We show a computation of time complexity on the example of Euclid’s algorithm, which fro two
positive natural numbers finds their greatest common divisor.

2.1.1 Euclid’s Algorithm. Let us calculate the time requirements of the Euclid’s algorithms,
which for given two natural numbers, finds their greatest common divisor.

The following is a recursive version of Euclid’s algorithm:

Euclid(a, b)
1. if b = 0
2. return a
3. else return Euclid(b, a(mod b))

2.1.2 Time estimation of Euclid’s Algorithm. We will use the recursive definition to
determine the time requirements.

Lemma 1: If a > b ≥ 1 and the algorithm Euclid(a, b) needs k recursive calls, then a ≥ F (k+ 2)
and b ≥ F (k + 1), where F (i) is the i-th member of the Fibonacci sequence.

Note that the Fibonacci sequence is defined by:

F (0) = 0, F (1) = 1, F (n) = F (n− 1) + F (n− 2) for n ≥ 2.

Proof (by mathematical induction):

1. Basic step: For k = 1, we have b ≥ 1 = F (2) and a > b ≥ 1, i.e. a ≥ 2 = F (3).

2. Inductive step: Assume that the assertion holds for k − 1 ≥ 1 recursive calls. Consider
that for numbers a > b ≥ 1 we need k ≥ 2 recursive calls. The procedure Euclid(a, b) first calls
Euclid(b, a(mod b)) which needs k − 1 recursive calls. From the induction assumption we know
that b ≥ F (k+ 1) and z = a(mod b) ≥ F (k). We have z = a− qb for a suitable integer q and z < b.
Since z < b, we get q ≥ 1 and therefore

a = qb+ z ≥ qF (k + 1) + F (k) ≥ F (k + 1) + F (k) = F (k + 2).

Lemma 2: Euclid(F (k + 2), F (k + 1)) needs k recursive calls.

March 11, 2020, 8:19

8 [200311-0819] Chapter 2. Time Complexity and Correctness of Algorithms

Lemma 3: For every n ≥ 0 we have F (n+ 2) ≥
(

3
2

)n
.

Proof. Mathematical induction.

1. Basic step. The assertion is obvious for n = 0 and n = 1, since F (2) = 1 ≥
(

3
2

)0
and

F (3) ≥
(

3
2

)1
.

2. Inductive step. Assume that F (n) ≥
(

3
2

)n−2
and F (n+ 1) ≥

(
3
2

)n−1
. Then

F (n+ 2) = F (n+ 1) + F (n) ≥
(

3

2

)n−2

+

(
3

2

)n−1

=

(
3

2

)n(
2

3
+

4

9

)
≥
(

3

2

)n

.

To finish the proof it suffices to notice that
(

2
3 + 4

9

)
= 10

9 .

2.1.3 Proposition: The algorithm Euclid(a, b) requires O(lg b) of recursive calls. Hence the
complexity related to the number of integer divisions is linear (because the size of its input is
proportional to lg(a+ b)).

2.1.4 Remark. The upper bound of time complexity of Euclid’s algorithm can be proved also
by the following consideration.

Proposition. Denote by xk and yk the pair of numbers xk > yk after k-th recursive call. Then
yk+2 <

yk

2 .

Proof. We know that yk+2 < yk+1 < yk. If yk+1 ≤ yk

2 , then yk+2 < yk+1 implies that yk+2 <
yk

2 .

Assume that yk+1 >
yk

2 . Then

yk+2 < xk+1 − yk+1 = yk − yk+1 <
yk
2
.

2.2 Correctness of Algorithms

2.2.1 To verify that an algorithm is correct we need to show two things:

1. that the algorithm will halt for every input;

2. when the algorithm halts it gives a correct output – a solution.

Below are a few examples to demonstrate the concepts of the two conditions of 1.4.1.

2.2.2 Bubble Sort.

Input: a sequence of natural numbers a[1], a[2], . . . , a[n].

Output: the sequence sorted in non-decreasing order.

begin

for k = n step -1 to 2 do

for j = 1 step 1 to k − 1 do

if a[j] > a[j + 1] then
interchange a[j] and a[j + 1]

end

2.2.3 The algorithm 2.2.2 terminates since the outer cycle is executed (n− 1)-times.

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

2.3. Minimal spanning trees [200311-0819] 9

2.2.4 Proposition. After execution of the i-th outer cycle, i.e. for k = n− i, we have

a) a[n− i+ 1], a[n− i+ 2], . . . , a[n] are the biggest numbers from numbers a[1], a[2], . . . , a[n];

b) and a[n− i+ 1] ≤ a[n− i+ 2] ≤ . . . ≤ a[n].

This proposition can be proved using induction on the number of executed cycles.

1. Basic step: For i = 0, i.e. before any outer cycle is performed, we have n − i + 1 = n + 1
and a[n+ 1] does not exist. So the assertions hold for it. For i = 1, i.e. after one execution of the
outer cycle, we have that a[n− 1 + 1] = a[n] and it is the greatest element of the sequence.

2. Induction step: If the assertions hold before the k-th execution of the inner cycle the after
it we have a[n − k + 1] ≥ a[j] for j ≤ n − k, and a) holds. Moreover, a[n − k] is smaller or equal
to a[n− k + 1], a[n− k + 2], . . . , a[n].

2.2.5 Correctness of the Euclid’s Algorithm 2.1.1 Note that even if a < b, then after the
first division we have r > t. Moreover, t > r (mod t) = z, hence the sequence of ts is strictly
decreasing, so it must equal 0 after a finite number of divisions — see condition a).

2.2.6 Proposition. The pair r, t and the pair t, z from Euclid’s Algorithm 2.1.1 have the same
common divisors.

From the proposition condition b) follows.

2.2.7 Variant. To prove that an algorithm terminates on every input we find a value which
is called a variant. A variant is usually a natural number that decreases during the run of the
algorithm untill it reaches the smallest possible value.

For the Bubble Sort 2.2.2, it is the number k; for Euclid algorithm 2.1.1, it is the remainder z
when r is divided by t.

2.2.8 Invariant. An invariant, also conditional correctness of an algorithm, is an assertion that

• holds before executing the first cycle of the algorithm or after the first execution of the cycle,

• if it holds before an execution of the cycle, then it holds also after its execution,

• when the algorithm terminates, the invariant guarantees that the solution is correct.

The invariant for the Bubble Sort is proposition 2.2.4, for Euclid’s Algorithm proposition 2.2.6.

2.3 Minimal spanning trees

2.3.1 A minimal spanning tree in a weighted undirected graph. Given a connected
undirected graph G = (V,E) with the set of vertices V and edges E. Let a valuation a of edges
be given, i.e. a mapping a:E → N. The aim is to find a spanning tree K of G such that∑

e∈K
a(e) is the smallest possible.

We show that any algorithm based on the following scheme is correct.

2.3.2 A general scheme.

Input: a connected undirected graph G = (V,E) and valuation of edges a.

Output: set of edges K of a minimal spanning tree.

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

10 [200311-0819] Chapter 2. Time Complexity and Correctness of Algorithms

1. (Initialize)
K := ∅, S = {{v} | v ∈ V };

2. (Choice of an edge.)
While S contains more than one element

choose an edge e ∈ E \K such that
it joins two distinct sets from S, denote them C1, C2, and
for at least one of them it is the cheapest edge leaving it.

3. (Changes.)
K := K ∪ {e};
S := (S \ {C1, C2}) ∪ {C1 ∪ C2}.

2.3.3 Termination of the scheme above (a variant). The general scheme above is not an
algorithm – the way how we choose an edge e in step 2 is not specified. It we implement it in
such a way that it guarantees that it is found in finite amount of time, the the scheme terminates.
Indeed, after processing an edge chosen in step 2 the number of elements of S decreases by one.
Since S has at the beginning n elements, after n − 1 steps 3 S has one element and the scheme
terminates.

2.3.4 Proposition (an invariant). If the set of edges K before step 2 is a subset of edges of
some minimal spanning tree, and if we choose e according to the scheme 2.3.2, then the set K∪{e}
is also a subset of edges of some minimal spanning tree.

Proof: Assume that the set K constructed by the scheme 2.3.2 is a subset of a minimal
spanning tree Tmin. Take an edge e from step 2. Then either e ∈ Tmin or e 6∈ Tmin.

The first case is easy: if e ∈ Tmin, then K ∪ {e} ⊆ Tmin.

Assume the later possibility; e 6∈ Tmin. We know that e = {u, v} joins two components of
connectivity of the graph (V,K), we denote them by S1 and S2; say u ∈ S1 and v ∈ S2. Further,
assume that e is the cheapest edge leaving S1. Since minimal spanning tree with edges Tmin is a
connected graph, there is a path C in Tmin from u to v. Denote by e1 the edge of C which leaves
S1.

Since e is the cheapest edge leaving S1 and e1 leaves S1 as well, we have a(e) ≤ a(e1).
On the other hand, if we add one edge to a spanning tree we close just one circuit; i.e. Tmin∪{e}

contains a circuit which is C ∪ {e}. Hence T = (Tmin ∪ {e}) \ {e1} forms a spanning tree as well.
Moreover, a(T) = a(Tmin) + a(e)− a(e1). Since Tmin is a minimal spanning tree, we have

a(Tmin) + a(e)− a(e1) ≥ a(Tmin), tj. a(e) ≥ a(e1).

Thus a(e) = a(e1) and hence a(T) = a(Tmin). This means that T is also a minimal spanning tree
and K ∪ {e} ⊆ T .

2.3.5 Remark. Kruskal’s algorithm, and Prim’s algorithm are special cases of the general
scheme 2.3.2.

2.4 Shortest paths

2.4.1 Shortest paths in a weighted directed graph Let G = (V,E) be a simple, directed
weighted graph and a:E → Z be a mapping on the edges of G to the integers. Denote by n the
number of vertices of G, i.e. n = |V |.

We will call the number a(e), e ∈ E, the length of the edge e. Let C be a directed walk in G.
The length of the walk C is

∑
e∈C a(e), i.e. the sum of lengths of all edges belonging to C.

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

2.4. Shortest paths [200311-0819] 11

2.4.2 Matrix A of lengths is a square matrix A = (a(i, j)) of order n, where n is the number
of vertices of G, and

a(i, j) =

 0, for i = j
a(e), for e = (i, j) ∈ E
∞, for (i, j) 6∈ E

2.4.3 Matrix U of distances is a square matrix U = (u(i, j)) of order n, where n is the
number of vertices of G, and

u(i, j) =

 0, for i = j,
the length of a shortest path from i to j, if there is a path from i to j
∞, if there is no path from i to j

2.4.4 Observation. Assume that there is a directed walk from vertex x to vertex y in graph
G, then:

1. If G contains only positive length cycles and there exists a shortest walk from x to y, then it
is also the shortest path from x to y.

2. If G contains no cycles of negative length, then any shortest walk from x to y has the same
length as a shortest path from x to y.

3. If G contains no cycles of negative length, then for every walk C from x to y there exists a
path from x to y, that is not longer than the walk C.

2.4.5 Triangular Inequality. If a graph G contains no cycles of negative length, then for every
three vertices x, y, z, it holds that

u(x, y) ≤ u(x, z) + u(z, y).

Proof: If u(x, y) =∞ or u(z, y) =∞ then the above inequality holds.

Let C1 be a shortest path from x to z and C2 a shortest path from z to y. If we join these two
paths together we obtain a walk from x to y whose length is u(x, z) + u(z, y). Since G contains
no cycles of negative length, this walk contains a path which is shorter or of the same length.
Therefore the length of a shortest path from x to y must satisfy u(x, y) ≤ u(x, z) + u(z, y).

2.4.6 Bellman’ Principle of Optimality. If a graph G contains no cycles of negative length,
then for every three vertices x, y, z, we have

u(x, y) = min
z 6=y

(u(x, z) + a(z, y)).

Proof: Clearly, the above assertion holds for all x, y for which there is no path from x to y.

Assume that there is a path from x to y, i.e. u(x, y) <∞. Since u(z, y) ≤ a(z, y) for every two
vertices z, y, we know from the Triangle Inequality that u(x, y) ≤ u(x, z) + a(z, y). Hence

u(x, y) ≤ min
z 6=y

(u(x, z) + a(z, y)).

Choose z to be the second to last vertex in a shortest path from x to y. It is easy to see that for
such z the equality holds.

2.4.7 Shortest paths from a given vertex r. Problem: Find lengths of shortest paths from
r to every vertex of G.

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

12 [200311-0819] Chapter 2. Time Complexity and Correctness of Algorithms

2.4.8 General Scheme.

Input: a simple directed graph G = (V,E) with lengths a.

Output: values U(v) that equal to u(r, v).

1. (Initialization.)
U(r) := 0, U(v) :=∞ for v 6= r;

2. (Processing of an edge.)
If there is an edge e = (v, w) such that

U(w) > U(v) + a(e)
then put U(w) := U(v) + a(e).

3. (Termination.)
If U(w) ≤ U(v) + a(e) for every edge e = (v, w), halt.
Else go to step 2.

2.4.9 Proposition. If a graph G contains no cycles of negative length and a value U(v) 6=∞,
then U(v) is the length of some path from r to v.

Outline of the proof: Denote by Ut(y) the value U(y) at time t. We have: if for some time tk,
Utk(x) <∞, then there is a walk

r = v1, e1, v2, e2, . . . , vk−1, ek−1, vk = x

and times t1 < t2 < . . . < tk such that

Uti(vi) =

i∑
j=1

a(ej).

Now, it is necessary to prove that the walk is in fact a path, i.e. that it does not contain any
vertex twice. Assume the contrary: if for for i < j we have vi = vj , then Uti(vi) > Utj (vj).

Moreover, Utj (vj) = Uti(vi) + a(ei) + . . .+ a(ej−1) and therefore
∑j−1

k=i a(ek) < 0 and the part of
vi, ei, vi+1, ei+1, . . . , vj contains a cycle of negative length — a contradiction.

2.4.10 Theorem. If graph G contains no cycles of negative length and the value U(v) was
calculated according to 2.4.8 then U(v) = u(r, v).

Proof: We proceed by contradiction. Assume that the assertion of the theorem does not hold;
i.e. General Scheme 2.4.8 halted and there is a vertex v such that U(v) > u(r, v); this can happen
only for u(r, v) <∞.

Consider a shortest path C from r to v. The first vertex of this path is r and it satisfies
U(r) = u(r, r); the last vertex of the path is v for which U(v) > u(r, v). Take the first edge
e = (x, y) on the path C for which U(x) = u(r, x) and U(y) > u(r, y) (such an edge must exist and
is unique). We have:

U(y) > u(r, y) = u(r, x) + a(x, y) = U(x) + a(x, y).

This is a contradiction with the fact that the general scheme 2.4.8 halted; the Triangle Inequality
does not hold for the edge e = (x, y).

2.4.11 Algorithms. We introduce two algorithms that follow the general scheme. Algorithm I
systematically tests whether for every edge e = (v, w) it holds that U(w) ≤ U(v) + a(e) and halts
it is so.

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

2.4. Shortest paths [200311-0819] 13

Algorithm I.

Input: A directed graph G = (V,E) with weights a and a vertex r.

Output: U(v) that equal to u(r, v).

1. (Initialization.)
U(r) := 0, U(v) :=∞ for v 6= r

2. (Processing edges.)
For every edge e ∈ E do

if U(KV (e)) > U(PV (e)) + a(e)
then U(KV (e)) := U(PV (e)) + a(e)

3. (Termination.)
If during the work of 2 no value U(v) was changed, halt and return U(v)
Else go to 2.

Algorithm II maintains a set M of vertices x such that it is not evident whether for every
edge e = (x,w) the inequality U(w) ≤ U(x) + a(e) holds. After initialization, M = {r}, and the
algorithm halts when M = ∅.

Algorithm II.

Input: A directed graph G = (V,E) with weights a and a vertex r.

Output: U(v) that equal to u(r, v).

1. (Initialization.)
U(r) := 0, U(v) :=∞ for v 6= r; M := {r}

2. (Processing edges..)
While M 6= ∅, choose x ∈M ;

M := M \ {x}
for every edge e with PV (e) = x do

if U(KV (e)) > U(x) + a(e)
then U(KV (e)) := U(x) + a(e); M := M ∪ {KV (e)}

3. (Termination.)
return U(v); halt

2.4.12 Shortest paths between all pairs of vertices. Our task is to find the whole matrix
U (instead of only one of its rows).

Denote the set of vertices of G by V = {1, 2, . . . , n}. Floyd’s Algorithm (also called the Floyd-
Warshall Algorithm) constructs matrices Uk = (uk(i, j)) of order n for k = 0, 1, . . . , n with the
following properties:

uk(i, j) is the length of a shortest i− j path with inner vertices in 1, 2, . . . , k.

2.4.13 Proposition. It holds that

1. U0 is the matrix A of lengths 2.4.2.

2. Un is the matrix U of distances 2.4.3.

3. The matrix Uk+1 can be obtained from the matrix Uk as follows:

uk+1(i, j) = min{uk(i, j), uk(i, k + 1) + uk(k + 1, j)}.

Proof: The first two properties easily follow from the definition of U0 and Un.

The third property follows from the following observation: a shortest path from i to j that goes
only through vertices 1, 2, . . . , k+ 1 either does not contain k+ 1 (and then has length uk(i, j)) or
it goes through k + 1 just once (and then is of length uk(i, k + 1) + uk(k + 1, j)) .

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

14 [200311-0819] Chapter 2. Time Complexity and Correctness of Algorithms

2.4.14 Floyd’s Algorithm.

Input: matrix A of lengths.

Output: matrix M = U of distances.

1. [Initialization]
M := A

2. begin

for k = 1, 2, . . . , n do

for i = 1, 2, . . . , n do

for j = 1, 2, . . . , n do

begin

if M(i, j) > M(i, k) +M(k, j) then
M(i, j) = M(i, k) +M(k, j)

end

end

2.4.15 Floyd’s Algorithm terminates after a finite number of steps, since the outer cycle is
executes n-times, i.e. the variant is k which ranges from 1 to n.

The invariant is 2.4.12 and the property 3 from 2.4.13.

2.5 Huffman Code

2.5.1 Huffman code for lossless data compression. Given data containing characters from
an alphabet C; moreover, for every character c ∈ C its frequency c.freq is given (i.e. how often
the character c occurs). We can code characters either by binary words of the same length (so
called fixed-length code); length of a codeword is given by the number of symbols. The length is
then the smallest k such that |C| ≤ 2k. In that case, the length of encoded data is the product of
the number of characters and the length of a code word k.

Another possibility is to code characters by binary words of distinct length (so called variable-
length code). Then the length of coded data equals to∑

c∈C
c.freq · |w(c)|,

where w(c) is the code word of character c and |w(c)| is its length. Note, that this is the same
formula also for a fixed-length code.

Encoding is always easy, decoding is easier if no codeword is a prefix of another codeword. Such
codes are called prefix codes (less often prefix-less codes). Any fixed-length codes is a prefix code.
We will study only variable-length codes that are prefix codes.

Every prefix binary code we can described as a binary tree T where leaves are labeled by
characters from C, edges are labeled by 0 and 1, where 0 means ”go to the left” and 1 means ”go
to the right”. A codeword of a character c is the label of the directed path from the root to the
leaf c.

The length of coded data is

B(T) =
∑
c∈C

c.freq · dT (c),

where dT (c) is the depth of the leaf c in the tree T .

Huffman code is a binary variable-length prefix code T with the smallest value of B(T).

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

2.5. Huffman Code [200311-0819] 15

2.5.2 Constructing a Huffman code.

Input: Given an alphabet C, n = |C|, and frequencies c.freq of characters c ∈ C in data.
Output: Tree T of an optimal binary tree.

1. Construct n trees Tc each with one element (root) labeled by c; c.freq;
Q := C; T := {Tc | c ∈ C}.

2. While |Q| 6= 1, choose x ∈ Q with the smallest value x.freq, and y ∈ Q with the second
smallest value y.freq;
add anew element z into Q, put z.freq := x.freq + y.freq, and x, y remove from Q;
Construct a tree Tz with root z (labeled z; z.freq) as follows: the left subtree of z is Tx, the
right subtree of z is Ty;
remove trees Tx and Ty from T , add Tz to T .

3. For Q = {q} and T = {Tq}, Tq is a binary tree which determines a prefix binary code by:
each edge into a left successor is labeled by 0, each edge to the right successor is labeled by
1. Put T := Tq.

2.5.3 Variant. Every execution of step 2 decreases the number of elements of Q (and of T as
well) by one. Therefore, algorithm halts after n− 1 executions of step 2.

2.5.4 Invariant.

Proposition. Let C be an alphabet and c.freq, c ∈ C, frequencies of characters in data. Let
x and y are two characters with the smallest frequencies. Let C ′ = (C \ {x, y}) ∪ {z}, where
z.freq = x.freq+ y.freq, all other frequencies are the same. Let T ′ be an optimal tree (i.e. a tree
with the smallest value B(T ′)) for C ′.

Construct a tree T from T ′ by replacing the leaf z by a three element tree, its root is z, the left
successor of z is x, and the right successor of z is y.

Then T is an optimal tree for C.

Idea of a proof. It can be proved that if we form a new tree T (for alphabet C) from T ′ (for
alphabet C ′) in such a way that: the leaf z with z.freq = x.freq + y.freq is replaced by three
element tree with root z, its left successor x, its right successor y, then

B(T) = B(T ′) + x.freq + y.freq.

Now, to finish the proof it suffices to know that it is always possible to find an optimal code
for the alphabet C in such a way that the codewords for characters x and y have the same length
and they differ only in the last bit. And this is what the following lemma states.

2.5.5 Lemma. Given an alphabet C with frequencies c.freq. Let x and y be two characters
with the smallest frequencies. Then there exists an optimal variable-length code for which the
codewords for x and y have the same length and they differ only in the last bit.

Idea of a proof. Denote by T the tree of an optimal code and denote by a, b the characters of C
which are in the last level of T , have the same father, and a.freq ≤ b.freq. Then x.freq ≤ a.freq
and y.freq ≤ b.freq.

If x.freq = b.freq then all characters x, y, a, b have the same frequency and we can exchange
x with a ans y with b without changing the value B.

Assume that x.freq 6= b.freq. We form a new tree T ′ by exchanging x with a and y with b. It
can be calculated that

B(T)−B(T ′) = (a.freq − x.freq)(dT (a)− dT (x)) + (b.freq − y.freq)(dT (b)− dT (y)).

The expression on the right hand side is non negative. It cannot be positive, otherwise T is not
optimal — the tree T ′ would have smalled value B(T ′)); hence T ′ is also optimal; which proves
the lemma.

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

16

Chapter 3

Turing Machines

At first, we study a classical model that preceded modern informatics and due to it the progress of
computers. It is so called a Turing machine introduced by Alan Turing in thirties of the twentieth
century.

3.1 Deterministic Turing Machines

3.1.1 Informal description of a Turing machine. Informally, can picture if as follows: It
consists of

• a finite control, which can be in one of a finite number of different states,

• a potentially infinite tape that is divided into cells, with each cell holding one of the tape
symbols, and

• from a head that reads the content of a cell and writes a tape symbol in the cell.

According to tape symbol X, which is read by the head, and according to state q of the finite
control, the Turing machine changes its state to p, writes a tape symbol Y on the scanned tape
cell, and moves its head either left or right. This change is described by the transition function δ.

3.1.2 A formal definition. A Turing machine, shortly TM, is a seven-tuple (Q,Σ,Γ, δ, q0, B, F)
where

• Q is a finite set of states,
• Σ is a finite set of input symbols (inputs),
• Γ is a finite set of tape symbols where Σ ⊂ Γ,
• B is a blank, a special symbol meaning that the cell is empty; it is a tape symbol that is not

an input (i.e. B ∈ Γ \ Σ),
• δ is a transition function, i.e. a partial mapping from (Q\F)×Γ into Q×Γ×{L,R}, (where
L means that the head moves one cell to the left, R one cell to the right),

• q0 ∈ Q is an initial state, and
• F ⊆ Q is a set of final or accepting states.

3.1.3 Instantaneous Description. Instantaneous description (ID), also called a configuration,
for a Turing machine M fully describes the state of M , the content of the tape, and the position
of its head. Any time during the work of M , the tape contains only a finite number of cells that
have a non-blank tape symbol.

Assume that

• expeting k cells with tape symbols X1, X2, . . . , Xk, all cells with smaller or greater number
contain B,

• the finite control is in state q and the head is scanning symbol Xi.

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

3.1. Deterministic Turing Machines [200311-0819] 17

Then we say that M is in ID

X1X2 . . . Xi−1 q XiXi+1 . . . Xk.

3.1.4 Initial ID. At the beginning of the work of TM over an input word w ∈ Σ?, w = a1 . . . an,
the finite control is in state q0, the tape contains a1 . . . an in n consecutive cells and the head is
scanning the symbol a1; other cells contain B. It means that the initial ID is

q0 a1 a2 . . . an.

3.1.5 A move of a TM. Given a Turing machine M = (Q,Σ,Γ, δ, q0, B, F).

Assume that δ(q,Xi) = (p, Y,R), then

X1X2 . . . Xi−1 q Xi . . . Xk ` X1X2 . . . Xi−1 Y pXi+1 . . . Xk. (3.1)

If i = k then
X1 . . . Xk−1 q Xk ` X1 . . . Xk−1 Y pB.

Assume that δ(q,Xi) = (p, Y, L), then

X1X2 . . . Xi−1 q Xi . . . Xk ` X1 . . . Xi−2 pXi−1 Y Xi+1 . . . Xk. (3.2)

If i = 1 then
q X1 . . . Xk ` pB Y . . . Xk.

If δ(q,Xi) is not defined then the Turing machine halts.

3.1.6 Computation. A computation of a TM over an input word w = a1a2 . . . ak is a sequence
of its moves starting with the initial ID q0 a1 . . . ak.

We will call the last ID, say αpβ, of a computation over w the result of the computation, and
we will write

q0 a1 . . . ak `? αpβ.

Note, that `? is the transitive and reflexive closure of the relation ` from 3.1.5 (on the set of all
IDs of the Turing machine).

If for w ∈ Σ? the TM enters a state p ∈ F , then we say that TM halts successfully , and the
content of the tape is called the output of TM corresponding to w.

If a TM cannot make a move and the finite control of TM is not in a final state, we say that
TM halts unsuccessfully.

3.1.7 Definition — a language accepted by a Turing machine. Given a TM M =
(Q,Σ,Γ, δ, q0, B, F). We say that a word w ∈ Σ? is accepted by M if M successfully halts over w.

Language accepted by M consists of all words accepted by M . In other words,

L(M) = {w ∈ Σ? | q0 `? αpβ, where p ∈ F , α, β ∈ Γ?}.

3.1.8 Definition — a function realized by a Turing machine. Given a mapping f : Σ? →
Σ?. We say that M realizes mapping f if:

• for every w ∈ Σ? for which f(w) is defined M sucessfully halts with output f(w);
• for every w ∈ Σ? for which f(w) is not defined M halts unsuccessfully.

Assume that f is a mapping f :Nk → N, i.e. it assings to an k-touple of natural numbers
n1, n2, . . . nk) a natural number f(n1, . . . , nk). Then M is . M realizes f if:

• if w = 0n110n21 . . . 10nk then M halts successfully with the output 0f(n1,...,nk);
• if w is not of the form 0n110n21 . . . 10nk , then M halts unsuccessfully.

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

18 [200311-0819] Chapter 3. Turing Machines

3.1.9 Remark. In the above definition 3.1.7 nothing is said about words w 6∈ L(M); for
w 6∈ L(M), M can either halt unsuccessfully or M may not halt at all. We introduce the notion
of decidable languages to define when M is guaranteed to halt.

Definition. We say that M decides a language L if L = L(M) and M halts on every input word
w.

Clearly, if M decides L then M also accepts L. The converse does not hold — later we shall
see an example of a language L that is accepted by a TM but there exists no TM that decides L.

3.1.10 Remark. In some literature, even when dealing with Turing machine as acceptor it is
required that when a word is accepted, the Turing machine has to have first cell to be scanned.
Similarly, when a function is realized then when halting it is required that the head scans the first
symbol of f(w). We do not require anything like this. It is easy to see that the difference is only
technical — when entering our ”accepting state” the new Turing machine moves left till the first
blank and then moves right and halts.

There are other variants of Turing machines: some models work with a semi infinite tape —
the tape has a fixed left end. In this case, at the start of execution, the input word is written at
the beginning of the tape and the head scans the first cell. In this model TM unsuccessfully halts
even if the head scans the first cell and the required move is to the left.

Another version of a Turing machine allows its head to stay stationary, i.e. to scan the same
cell. In this case the transition function δ is a partial mapping from (Q\F)×Γ to Q×Γ×{R,L, S},
where S means that in the next move the head reads the same cell.

All these models are equivalent: whenever a language L is accepted/decided by a Turing
machine of one type there is a Turing machine of the other type that accepts/decides L.

3.1.11 Time and space complexity of a Turing machine.

Definition. Time complexity of M is a partial function T (n) from the set of all natural numbers
such that

• If for a word w of length n the Turing machine M does not halt, T (n) is not defined.
• Otherwise, it is the maximum number of steps that M does before halting, where the

maximum is taken over all words w ∈ Σ? of length n.

Definition. Space complexity of M is a partial function S(n) from the set of all natural numbers
such that

• If for a word w ∈ Σ? of length n the Turing machine M needs infinitely many tape cells,
S(n) is not defined.

• Otherwise, S(n) is the maximum difference between numbers of tape cells visited by M ,
where the maximum is taken over all words w ∈ Σ? of length n.

3.1.12 Techniques for design of TM. There are two basic techniques — information re-
membered by a state, and multiple tracks. In the first case, the name of a state can contain an
information. Indeed, a name of a state can be a pair (q, 0) or (q, 1) with the meaning that (q, 0) is
entered if 0 was read, unlike (q, 1) which is entered if 1 was read.

For simplifying a design of a TM we can use the techniques called ”multiple tracks”. Not only
name of a state can carry an information, also tape symbols can be pairs, triples, k-tuples. In such
case we say that the tape has 2, 3, or k tracks.

3.2 Turing machines with k tapes.

Informally, a Turing machine M with k tapes consists of a finite control, k infinite tapes and k
independent heads. According to the state in which the finite control is, and according to the k

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

3.2. Turing machines with k tapes. [200311-0819] 19

tape symbols that the heads read, M changes the state of the finite control, writes k tape symbols
on the appropriate tape cells and move k heads independently either to the left or to the right.

Definition. Formally, a TM M with k tapes consists of:

• a finite control which is in one of a finite number of states q ∈ Q,
• a finite number of input symbols Σ,
• a finite set of tape symbols Γ,
• a transition function δ, which is a partial mapping δ: (Q \ F)× Γk → Q× Γk × {L,R}k,
• an initial state q0,
• and a set F ⊆ Q of final or accepting states.

At the beginning we have:

• the input w = a1a2 . . . an is on the first tape surrounded by blanks, and all other tapes
contain only blanks;

• finite control is in q0;
• the first head scans a1.

3.2.1 A move of a Turing machine with k tapes. If the transition function is defined then,
(according to δ):

• finite control changes the state;
• each head rewrites the content of the cell that is scanned;
• each head independently moves either one cell to the right or to the left.

3.2.2 The language accepted/decided by a Turing machine M with k tapes is defined
similarly as for a TM with one tape. We define that M successfully halts if the finite control of M
enters an accepting state, i.e. a state p ∈ F . If M cannot make the next move, i.e. the transition
function is not defined for a given state and given k-tuples of tape symbols, then we say that M
halts unsuccessfully.

A word w ∈ Σ? is accepted by TM M if during the work over w M successfully halts. The set
of all words accepted by M is called the language accepted by M and is denoted by L(M).

Moreover, if M halts on every input word w ∈ Σ?, then we say that L(M) is decided by M .

3.2.3 Remark. Every Turing machine with one tape can be considered as a Turing machine
with k tapes for k = 1.

3.2.4 Theorem. For every Turing machine M1 with k tapes there exists a Turing machine with
one tape M2 which accepts/decides the same language as M1.

Moreover, if M1 needs for n moves then M2 needs O(n2) moves.

Idea of its proof. The Turing machine M2 has one tape with 2k tracks. Each tape of M1 is
simulated by two tracks of M2 – in such a way that the first track (corresponding to the tape)
contains only the position of the head of M1, the second track contains the content of the tape
which is simulated.

One step of TM M1 is modeled:

The head of TM M2 is in such position that all the cells containing information about heads of
M1 is to its right. At first, the head of M2 scans all the positions of of heads of M1, the contents
read by them are retained in the state. Hence, M2 has got all the information for one move of M1.

According to the transition function of TM M1 when traversing to the left, it changes contents
of the even tracks and moves the margins in odd tracks accordingly (if the head of M1 moves to
the left/right, so does the corresponding marker).

If the step we simulate is the n/th step of TM M1 then M2 needs for simulating it need at
most O(n) steps.

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

20 [200311-0819] Chapter 3. Turing Machines

3.3 Nondeterministic Turing Machines

If a Turing machine (either with one tape or k tapes) is allowed to move from one ID to several
different IDs, then we get nondeterministic Turing machine, shortly NTM.

Definition. Nondeterministic Turing machine, shortly NTM, is a seven-tuple (Q,Σ,Γ, δ, q0, B, F)
where

• Q is a finite set of states,
• Σ is a finite set of input symbols,
• Γ is a finite set of tape symbols where Σ ⊂ Γ,
• B is blank, the empty symbol, B ∈ Γ \ Σ,
• δ is a transition function: a mapping from the set (Q\F)×Γ into the set Pf (Q×Γ×{L,R})

(Pf (X) is a set of all finite subsets of X),
• q0 ∈ Q is a initial state and
• F ⊆ Q is a set of final/accepting states.

A move of an NTM is defined analogously as for a deterministic TM:

Assume that (p, Y,R) ∈ δ(q,Xi), then

X1X2 . . . Xi−1 q Xi . . . Xk ` X1X2 . . . Xi−1 Y pXi+1 . . . Xk. (3.3)

Assume that (p, Y, L) ∈ δ(q,Xi), then

X1X2 . . . Xi−1 q Xi . . . Xk ` X1 . . . Xi−2 pXi−1 Y Xi+1 . . . Xk. (3.4)

3.3.1 The language L that is accepted by an NTM consists of all words w ∈ Σ? for which

q0 w `? Y1 Y2 . . . Yi qf Yi+1 . . . Ym

for some accepting state qf ∈ F (`? is the transitive and reflexive closure of `).

Informally: a word w is accepted by a nondeterministic Turing machine if and only if there
exists an accepting computation, i.e. a sequence of moves after which the finite control enters an
accepting state. (Notice, that there may also exist a computation over w which does not halt
successfully and/or that does not halt at all.)

If a nondeterministic Turing machine M accepts a language L, and, moreover, if every
computation of M over any input halts always after a finite number of moves, then we say that M
decides the language L.

3.4 Random Access Machine — RAM

3.4.1 In this section we introduce another formal model of an algorithm — the Random Access
Machine (RAM), which is closer to a ”classical” computer than a Turing machine. We will show
that these two models are equivalent, in other words, that what can be done by a program on RAM
can be done by TM and vice versa. Moreover, a simulation of a Turing machine by RAM can be
done in such a way that the amount of moves TM needs to simulate n steps of the program on
RAM is O(n3). This will allow us to switch between these two models whenever it will be useful.

3.4.2 Random Access Machine, or just RAM, consists of a control unit, an arithmetic unit,
a memory unit and an input and an output unit.

3.4.3 Program unit contains a program and a program register (the program register points
to an instruction which should be performed).

3.4.4 Arithmetic unit executes arithmetic operations such as addition, subtraction, multipli-
cation and division.

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

3.4. Random Access Machine — RAM [200311-0819] 21

3.4.5 Memory is divided into memory cells; each cell can contain an integer. We assume that
there is an unlimited number of memory cells and that there is no limit to the size of an integer
contained in a cell. The index of a cell is called its address.

The cell with address 0 is called the working register.

3.4.6 Input unit consists of an input tape and a head. The input tape is divided into cells; in
each cell a positive integer can be stored. At any moment the input head is scanning exactly one
cell. After a content of a cell is scanned, the head moves one cell to the right.

3.4.7 Output unit consists of an output tape and a head. Similar to the case of input unit,
the tape is divided into cells. If the output head writes a number into a cell, it moves one cell to
the right.

3.4.8 Configuration of the RAM is a mapping that assigns an integer to every input and
output cell, each memory cell and to the program register (only finite number of cells can be
nonzero).

Initial configuration is a configuration for which there is a natural number n with the following
properties:

• except for the first n input cells, all the other cells contain 0

• the program register contains number 1

• the first n cells contain the input of the RAM

3.4.9 Computation on an input w of RAM is a sequence of configurations such that the
first configuration is the initial one and every following configuration was created according to the
program of RAM.

3.4.10 Program of a RAM uses the following instructions:

• shift instructions: LOAD operand, STORE operand,

• arithmetic instructions: ADD operand, SUBTRACT operand, MULTIPLY operand, DI-
VIDE operand

• input and output instructions: READ, WRITE

• jump instructions: JUMP label, JZERO label, JGE label

• halt instructions: HALT, ACCEPT, REJECT

3.4.11 Operand is either a number j, denoted = j, or the content of the j-th memory cell, we
write j, or the content of the memory cell with address cj , where cj is the content of the cell with
address j, denoted ∗j.

3.4.12 Label is a natural number which means the number of the instruction to be performed
if there is a jump.

3.4.13 Time complexity. We say that a program P for RAM has time complexity O(f(n)) if
for every input of size n the number T (n) of steps of RAM is O(f(n)).

3.4.14 Space complexity. We say that a program P for RAM works with space size m if during
the computation no instruction with the address of an operand greater than m was performed and
at least one instruction was used on an operand with address m.

We say that program P has space complexity O(g(n)) if for every input of size n program P
works with space size O(g(n)).

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

22 [200311-0819] Chapter 3. Turing Machines

3.4.15 Remark. If there is an input on which the program P does not halt, then the time
complexity is undefined. If there is not bound on the address then the space complexity is
undefined.

3.4.16 Theorem. For every Turing machine M , there is a program P for RAM such that P
simulates the behaviour of M . Moreover, if M needs n moves then P needs O(n2) steps.

3.4.17 Theorem. For a program P of a RAM, there exists a Turing machine M with five tapes
such that P and M have the same behavior.

3.4.18 Theorem. If a program P of a RAM satisfies the following conditions:

• P contains only instructions that increase the length of a number written in binary by at
most 1;

• P contains only instructions that a Turing machine with l tapes can perform with words of
length k in O(k2) moves,

then the Turing machine from the theorem 3.4.17 simulates n steps of P using O(n3) of its moves.

3.4.19 Corollary. Given a program P of a RAM which satisfies conditions from 3.4.17, there
is a Turing machine with one tape that has the same behavior as P and n steps of P are simulated
by O(n6) moves of the Turing machine.

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

23

Chapter 4

Complexity Classes

4.1 Decision Problems

The complexity theory deals mainly with so called decision problems. These are problems for
which a solution is either ”YES” or ”NO”.

Example. SAT – Satisfiability of Boolean formulas: Given a formula ϕ in CNF (conjunctive
normal form). Decide whether ϕ is satisfiable.

The answer for a given ϕ is either ”YES” if for ϕ there is a truth valuation in which it is true,
or ”NO” if ϕ is not true in any truth valuation. Note that we do not ask for a truth valuation in
which it is true, only its existence is important.

4.1.1 Different types of problems. Lot of problems from real live are of a different type than
the example above. Often they are problems the aim of which is to find a feasible solution that is
a ”best” one. Usually, for each instance I of a problem there is a set of feasible solutions F (I), and
a goal function d which to every feasible solution assigns a real number. Three types of questions
can be asked:

• Find a feasible solution for which the goal function is optimal. (Whether the word optimal
means maximal or minimal depends on the problem) — optimization version.

• Find the value of the goal function of an optimal feasible solution — evaluation version.
• Given moreover a constant K. Decide whether there is a feasible solution with the value of

its goal function nor worse than K — decision version.

We show all three types of problems on the example of traveling salesman problem.

4.1.2 Traveling Salesman Problem – TSP. Given towns 1,2, . . . , n. For each pair of towns
i, j, a number d(i, j) is given (so called distance between i, j).

Informally, a tour is the order of towns in which a salesman can visit so that he visits each just
once and he returns to the town in which he started. Then length of the tour is the sum of all
distances that he made during the tour.

Formally: A tour is given by a permutation π of {1, 2, . . . , n}. Length of tour T corresponding
to permutation π is

d(T) =

n−1∑
i=1

d(π(i), π(i+ 1)) + d(π(n), π(1)).

Optimization version of TSP: Find a tour T for which d(T) is the smallest one.

Evaluation version of TSP: Find the length of an optimal tour T , i.e. a tour with smallest
length.

March 11, 2020, 8:19

24 [200311-0819] Chapter 4. Complexity Classes

Decision version of TSP: Moreover, a number K is given. Decide whether ther is a tour T
for which

d(T) ≤ K.

4.1.3 Decision versions.

• A minimal spanning tree: Given a connected undirected graph G = (V,E), valuation
c:E → N, and a number L. Is there a minimal spanning tree with its length at most
L?

• Given a matrix of lengths A = (a(i, j)), two vertices r, c, and a number L. Is there a path
from r to c of length at most L?

4.1.4 Evaluation versions.

• A minimal spanning tree: Given a connected undirected graph G = (V,E) and a valuation
c:E → N. What is the length of a minimal spanning tree?

• Given a matrix of lengths A = (a(i, j)) and two vertices r, c. Find the length of a shortest
path from r to c.

4.1.5 Optimization versions.

• A minimal spanning tree: Given a connected undirected graph G = (V,E) and a valuation
c:E → N. Find a minimal spanning tree.

• Given a matrix of lengths A = (a(i, j)) and two vertices r, c. Find a shortest path from r to
c.

4.1.6 It can be proved that if any of the three versions of an optimization problem is polynomi-
ally solvable then so is its optimization version as well. We show such justification on the example
of the Traveling salesman problem.

Suppose that there is a polynomial algorithm A which decides for a given instance of TSP and
given number L whether there is a tour of length at most L.

Consider an instance I of TSP. Denote by d the maximum of d(i, j); further denote A := n · d
where n is the number of towns. Call A for L := dA2 e. It A answers ”YES” then for a new number
L choose the mid point between 0 and L, if A answers ”NO” then new L becomes K the mid
point between L and 2L. We repeat this procedure till the interval for new L becomes trivial (of
length 0). Now, the last value of L is the length of an optimal tour and this is the solution of the
evaluation version of TSP. Note that since we dealt only with integer value of L, the procedure
stops after lg(A) = lg(n · d) which is O(lg(n)) repetitions.

We have shown that after O(lg(n)) calls of the algorithm A we know the optimal length of a
tour, we denote it by Dopt.

Consider the complete undirected graph G on the set of vertices V = {1, . . . , n} with edge
lengths d(i, j). Now, we give directions to the edges as follows: for i < j the edge {i, j} becomes
a directed edge (i, j). We order edges lexicographically. Now, for every edge (i, j) in this order we
create a new instance Ii,j of TSP in such a way that in the previous instance we change the value
of d(i, j) to d(i, j) := n · d. Further, we call the algorithm A for Ii,j and L = Dopt. If A answers
”YES” we leave d(i, j) := n · d. If A answers ”NO, d(i, j) gets its original value. And we pass to
the next pair (i, j) in the ordering.

When we have only n pairs with the original value d(i, j), these n edges form an optimal tour
of the instance I.

Notice that in the second part we have used only O(n2) calls of the algorithm A. Therefore
we get: If there was a polynomial algorithm solving the decision version of TSP, then there is a
polynomial algorithm that solves the optimization version of TSP.

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

4.2. Classes P and NP [200311-0819] 25

4.2 Classes P and NP
4.2.1 Instance of a problem as a word over a suitable alphabet. Every instance of an
arbitrary decision problem can be encoded as a word over a suitable alphabet. We will demonstrate
this on the SAT problem and the problem of finding shortest paths in a given weighted graph.

• An instance of SAT (Satisfiability Problem) is an arbitrary formula ϕ in conjunctive normal
form (CNF). Rename logical variables of ϕ by x1, x2, . . . , xn. Then we can encode ϕ as a
word over the alphabet {x, 0, 1, (,),∨,∧,¬} as follows: xi will correspond to the word xw
where w is the number i written in binary; other symbols remain the same.

For example, the following formula ϕ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x4) corresponds to the
following word

(x1 ∨ ¬x10 ∨ x11) ∧ (¬x1 ∨ x100).

• Consider the problem of finding a shortest path from a vertex r to a vertex c, an instance
consists of a matrix of lengths A, two vertices r and c, and a number k. Let us rename the
vertices of the graphs by numbers, i.e. V = {1, 2, . . . , n}. A can be easily coded as a word;
this will be followed by the vertices r and c, and a number k (written in binary); the matrix,
r, c, and k are separated by a symbol #.

4.2.2 A decision problem as a language over an alphabet. Given a decision problem U ,
since an output (a solution) of U is either YES or NO, we divide instances of U into YES-instances
and NO-instances. The language corresponding to U , denoted by LU , consists of all words that
represent YES-instances of U .

Note that some words over the alphabet Σ do not need to correspond to any instance of U .
We consider such words as corresponding to NO-instances. Thus we can assume that the set of all
NO-instances forms a complement of the language LU , i.e. it equals to Σ? \ LU .

4.2.3 Class P. We say that a decision problem U (a language L) belongs to the class P if there
is a deterministic Turing machine which decides LU (L) and has a polynomial time complexity;
i.e. its complexity is O(p(n)) for a polynomial p(n).

4.2.4 Examples of P problems.

• Minimal spanning tree. Given an undirected graph G with weight function c, and a
number k, does there exist a spanning tree of G with weight at most k?

• Shortest paths in an acyclic graph. Given an acyclic graph with weight function a,
vertices r and c, and a number k, does there exist a directed path from r to c of length at
most k?

• Flows in networks. Given a network with capacity c, source s, sink t, and k representing
desired flow, does there exist a admissible flow of value at least k?

• Minimal cut. Given a network with capacity c and a number k, does there exist a cut of
capacity at most k?

The problems listed above are stated as decision problems. Very often we speak about their
optimization versions also as polynomially solvable problems.

4.2.5 Class NP. We say that a decision problem U (a language L) belongs to the class NP if
there exists a nondeterministic Turing machine which decides LU (L) in polynomial time.

4.2.6 Remark. In the definition 4.2.3 (class P) we could require instead of a Turing machine
a program P for RAM (or an algorithm) which solves U in polynomial time.

It is not straightforward to construct a nondeterministic Turing machine for a given decision
problem, even though we know that it should exist. To verify that a problem, i.e. a language,
belongs to the class NP, it is useful to introduce a concept similar to an algorithm, or a program
for RAM. A nondeterministic algorithm is the notion we will use.

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

26 [200311-0819] Chapter 4. Complexity Classes

4.2.7 A nondeterministic algorithm works over an instance I in two steps:

Step 1. It randomly generates a sequence s,

Step 2. A (deterministic) algorithm (a Turing machine, a program for RAM) takes as an input I and
s and gives an answer either YES or NO.

We say that a nondeterministic algorithm solves a problem U if
1. For every YES-instance of U there exists a sequence s for which the step 2 answers YES.
2. For any NO-instance of U there exists no sequence s for which the step 2 answers YES.

We say that a nondeterministic algorithm works in time O(T (n)) if any execution of both steps
1 and 2 for an instance of size n requires O(T (n)) steps.

4.2.8 Remark. The fact that a nondeterministic algorithm works in polynomial time means
that also each step requires polynomial time. Therefore, any sequence s generated by step 1 must
be of polynomial length (with respect to the size of the instance).

In the definition 4.2.5 we could require instead of a nondeterministic Turing machine an
nondeterministic algorithm which solve U in polynomial time.

4.2.9 Examples of NP problems.

• Cliques. Given an undirected graph G and a number k is there a clique in G having at least
k vertices?

• Shortest paths in a general graph. Given a directed weighted graph G with weight
function a, two vertices r and v, and a number k, is there a directed path from r to v of
length at most k?

• k-colorability. Given an undirected graph G without loops, is G k-colorable?

• Knapsack problem. Given n objects 1, 2, . . . , n each with value ci and weight wi, and
two natural numbers A and B which represent total weight and total price respectively, is it
possible to choose the objects so that their total weight is at most A and their total price is
at least B.

In other words, does there exist a subset of objects I ⊆ {1, 2, . . . , n} such that∑
i∈I

wi ≤ A a
∑
i∈I

ci ≥ B?

4.3 Class NPC
4.3.1 Reductions and polynomial reductions. Given two decision problems U and V. We
say that a problem U reduces to a problem V, if there is an algorithm (a program for RAM, a TM)
M that for every instance I of U constructs an instance I ′ of V such that

I is a YES-instance of U iff I ′ is a YES-instance of V.

The fact that U reduces to V is denoted by

U � V.

Moreover, if the algorithm M works in polynomial time, then we say that U polynomially reduces
to V, and we denote it

U �p V.

Roughly speaking, U � V means that U is not more difficult than V.

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

4.3. Class NPC [200311-0819] 27

4.3.2 Proposition. Given three decision problems U , V and W. If

U �p V and V �pW, then U �pW.

4.3.3 NP complete problems. We say that a decision problem U is NP complete if

1. U belong to the class NP;

2. every NP problem polynomially reduces to U .

The class of all NP complete problems is denoted by NPC.

Roughly speaking, NP complete problems are the most difficult ones among all NP problems.

4.3.4 Remark. Similarly, we can speak about the class of NP complete languages. The only
difference is that a language L1 polynomially reduces to a language L2 means that there is an
algorithm M such that for every word w, the algorithm constructs a word w′ in such a way that

w ∈ L1 iff w′ ∈ L2.

Note that U �p V if and only if LU �p LV .

4.3.5 Proposition. Given two NP problems U and V for which U �p V, then

1. if V is in the class P then so is U ;

2. if U is an NP complete problem then so is V.

4.3.6 Proposition. If there is an NP complete problem that belongs to the class P (i.e. that
is polynomially solvable) then P = NP and every NP problem is polynomially solvable.

4.3.7 NP hard problems. If we know that anyNP problem polynomially reduces to a problem
U (or we know that there is a NP complete problem that polynomially reduces to U), then we
say that U is NP hard. Note that this means that U is at least as difficult as all NP complete
problems.

4.3.8 Cook’s theorem. The problem SAT , satisfiability of formulas in conjunctive normal
form, is an NP complete problem.

Sketch of the proof. It is not difficult to verify that SAT belongs to the class NP. The first
phase of a nondeterministic algorithm generates a truth valuation u of logical variables contained
in ϕ. It is easy to see that there is a checking algorithm that verifies if ϕ is true in u. Moreover,
any satisfiable formula has a truth valuation u for which it is true, and there exists no such u for
an unsatisfiable formula.

The second part of the proof consists of a description of a computation of a nondeterministic
Turing machine over a word by means of a formula (which can be transformed to a formula in
CNF). We will show the main ideas of such a description.

Given a nondeterministic Turing machine M with the set of states Q, input alphabet Σ, tape
alphabet Γ, transition function δ, initial state q0 and accepting (final) state qf , assume that M
accepts a word w in p(n) moves.

We introduce the following logical variables:

hi,j , i = 0, 1, . . . , p(n), j = 1, 2, . . . , p(n);

the fact that hi,j is true means that the head of M at timet i reads j-th tape cell.

sqi , i = 0, 1, . . . , p(n), q ∈ Q;

the fact that sqi is true means that at time i M is in state q.

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

28 [200311-0819] Chapter 4. Complexity Classes

tAi,j , i = 0, 1, . . . , p(n), j = 1, 2, . . . , p(n), A ∈ Γ;

the fact that tAi,j is true means that at time i the tape contains in j-th cell symbol A.

Now we need formulas to describe the following facts:

1. At every time i, i = 0, . . . , p(n), NTM M is in exactly one state.

2. At every time i, i = 0, . . . , p(n), the head of M reads exactly one cell of the tape.

3. At every time i, i = 0, . . . , p(n), each tape cell contains exactly one tape symbol.

4. At the beginning of the work of M (i.e. at time 0), M is in q0; its head reads the first tape
cell; the tape contains the first n cells the input word, and other cells contain B.

5. One step of M is determined by the transition function; i.e. the state of M at the next time
i+ 1, the content of the cell just read, and the cell which is scanned at the time i+ 1 is given
by the transition function.

6. The content of tape cells that are not scanned at time i remains the same in the next time
i+ 1.

7. If a word is accepted, then at the end of the work, i.e. at time p(n), M is in qf .

We show how formulas for 1, 4, 5, 6 and 7 can be created.

Add 1. At time i, the Turing machine M is in at least one state:∨
q∈Q

sqi .

At time i, the Turing machine M is not in two different states:∧
q 6=q′

(¬sqi ∨ ¬s
q′

i).

Now, the fact that M is at time i in exactly one state is the conjunction of both the above formulas:

(
∨
q∈Q

sqi) ∧
∧
q 6=q′

(¬sqi ∨ ¬s
q′

i).

Add 4. At the beginning (i.e. at time 0) M is in the state q0, the head scans the first tape cell,
and the first n cells of the tape contain the input a1a2 . . . an; other tape cells contain B.

sq00 ∧ h0,1 ∧ ta1
0,1 ∧ . . . ∧ t

an
0,n ∧ tB0,n+1 ∧ . . . ∧ tB0,p(n).

Add 5. At time i, M is in the state q, the head scans the j-th tape cell that contains the tape
symbol A, and δ(q, A) is {(pk, Ck, Dk) | k = 1, . . . ,m} (where Dk = 1 means that the head moves
to the right, Dk = −1 means that the head moves to the left). Then the formula which describes
the configuration of M at the next time i+ 1 is:∧

j

∧
A∈Γ

((sqi ∧ hi,j ∧ t
A
i,j)⇒

∨
(spi+1 ∧ t

C
i+1,j ∧ hi+1,j+D)).

Add 6. The content of cells other than the j-th at time i+ 1 remains the same as in i:∧
j

∧
A∈Γ

((¬hi,j ∧ tAi,j)⇒ tAi+1,j).

Add 7. At the end of the work of M , i.e. at time p(n), M is in the state qf .

s
qf
p(n).

The resulting formula is a conjunction of the formulas mentioned above for all times i =
0, 1, . . . , p(n).

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

4.4. Reductions [200311-0819] 29

4.4 Reductions

4.4.1 We know, see the proposition 4.3.5, that to prove that a decision problem U in NP is
NP complete, it suffices to show that any NP complete problem polynomially reduces to U . Until
now, the only problem which we have proved to be NP complete is SAT , satisfiability of Boolean
formulas in conjunctive normal form. In this section, we show several polynomial reductions that
will help us to prove that other decision problems are also NP complete.

4.4.2 3 − CNF SAT . Problem: Given a formula ϕ in CNF such that each clause contains at
most 3 literals, is ϕ satisfiable?

4.4.3 Proposition. It holds that

SAT �p 3− CNF SAT.

Sketch of the reduction SAT to 3−CNF SAT . Given a formula ϕ in CNF, we shall construct
a formula ψ such that

1. ψ is in CNF and each clause contains at most 3 literals;

2. ψ is satisfiable if and only if ϕ is satisfiable.

Denote by C1, C2, . . . , Ck all clauses of ϕ. if each contains at most 3 literals then ψ = ϕ.

For every clause C which contains more than 3 literals we construct a formula ψC as follows:
Let C = l1 ∨ l2 ∨ . . . ∨ ls, where li are literals. We introduce new logical variables x1, x2, . . . , xs−3

and put

ψC = (l1 ∨ l2 ∨ x1) ∧ (¬x1 ∨ l3 ∨ x2) ∧ (¬x2 ∨ l4 ∨ x3) ∧ . . . ∧ (¬xs−3 ∨ ls−1 ∨ ls).

We have: ψC is satisfiable iff C is satisfiable.

Formula ψ is the conjunction of all clauses of ϕ that have at most 3 literals and of formulas ψC

for clauses C with more than 3 literals.

Assume that ϕ has k clauses each of them with at most s literals. Then when constructing ψ
we created at most (s− 3)k new logical variables. Moreover, the number of new literals added to
the formula is at most 2(s− 3)k (each new logical variable appears in ψ twice). Hence the length
of ψ is only a polynomial of the length of the original formula ϕ.

4.4.4 Corollary. 3− CNF SAT is an NP complete problem.

4.4.5 k-colorability. Problem: Given a simple undirected graph G without loops and a number
k, is G k-colorable?

4.4.6 Proposition. It holds that

3− CNF SAT �p 3-colorability.

Sketch of the reduction 3−CNF SAT to 3-colorability. Assume that ϕ is a formula in CNF
where each clause has 3 literals. We have to construct a simple undirected graph G without loops
such that ϕ is satisfiable if and only if G is 3-colorable.

The construction of G uses an auxiliary graph with five vertices 1, 2, 3, 4, 5 and five edges

e

d

c

b

a

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

30 [200311-0819] Chapter 4. Complexity Classes

with the following properties:

• If each of vertices 1 and 2 have the same color c, then so must vertex 5.

• If one of vertices 1 and 2 has color g then we can color the graph in such a way that 5 has
color g.

Given a formula ϕ, denote by x1, x2, . . . , xn all logical variables that occur in ϕ. Let us construct
an undirected graph G = (V,E) where

• V consists of all literals, i.e. x1,¬x1, . . . , xn,¬xn, and vertices R,G,B.

• E contains edges so that vertices R,G,B, B, xi,¬xi for every i = 1, . . . , n form a triangle.

• Further, for every clause containing literals l1, l2, l3 add to the graph two copies of the
auxiliary graph G1 in the following way: Literals l2 and l3 correspond to vertices a and
b of the first copy of G1, vertices l1 and e correspond to vertices a, b and vertex R is e of the
second copy of G1,

An example of the graph G for two clauses C1 = ¬z ∨ y ∨ ¬x and C2 = t ∨ ¬z ∨ x (x, y, z, t
logical variables) is on the following picture.

R

G

B

x y z v

¬x ¬y ¬z ¬v

Assume that formula ϕ is satisfiable; then there is a truth valuation in which ϕ is true. Color
the graph G with three colors g (green),r (red) and b (blue) as follows:

• Vertices R,G,B: c(R) = r, c(G) = g, c(B) = b.

• The vertex corresponding to a literal l has color g if and only if l is true, otherwise it has
color r.

Since every clause contains at least one literal which is true, i.e. which has color g, it is possible
to color all remaining vertices so that G is colored with three colors.

Assume that the graph G is 3-colorable. Rename the colors so that c(R) = r, c(G) = g,
c(B) = b. Now, define a truth valuation of logical variables x1, x2, . . . , xn as follows:

variable xi is true iff c(xi) = g and variable xi is false iff c(xi) = r.

From the properties of the auxiliary graph G1, it follows that for each clause there is at least one
literal with its color g, hence it is true.

It is not difficult to see that the number of vertices and the number of edges of G is polynomial
with respect to the length of ϕ.

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

4.4. Reductions [200311-0819] 31

4.4.7 Corollary. Since the problem of 3-colorability is in NP, 3-colorability is an NP complete
problem.

4.4.8 Proposition. It holds that

3-colorability �p ILP.

Reduction of 3-colorability to ILP . Given a simple undirected graph G = (V,E) without
loops, we will construct an instance I of integer linear program such that I has a feasible solution
if and only if G is 3-colorable. (In fact, variables will have value either 0 or 1, so it will be 0-1
linear program.)

Variables: For each vertex v ∈ V we introduce three variables:

xrv, x
g
v, x

b
v.

Meaning: The fact that a variable xcv equals 1, c ∈ {r, g, b} means that vertex v has color c.

Constraints:

• For every vertex v ∈ V we have one equation that guarantees that v has exactly one color
— either r or g or b:

xrv + xgv + xbv = 1.

• For every edge e = {u, v} we have three inequalities (each for one color). They guarantee
that two adjacent vertices u and v do not have the same color:

xru + xrv ≤ 1, xgu + xgv ≤ 1, xbu + xbv ≤ 1.

We have that G is 3-colorable if and only if I has a feasible solution.

The number of variables of I is 3 |V |; further, I has |V | + 3 |E| constraints. Hence the size of
I is O(n+m) where n = |V | and m = |E|.

4.4.9 Corollary. Since ILP belongs to NP, ILP is an NP complete problem.

4.4.10 Partition problem. Problem: Given a finite (nonempty) set X and a collection of its
subsets S.

Question: Is it possible to choose from S a collection A that forms a partition of X? In other
words, is there A ⊆ S such that each element x ∈ X belongs to exactly one set of A?

4.4.11 Proposition. It holds that

3-colorability �p Partition problem.

Reduction of 3-colorability to Partition problem. Given a simple undirected graph
G = (V,E) without loops, we will construct a set X and a collection of its subsets S such that G
3-colorable if and only if S contains a partition of X.

Set X:

• For every vertex v ∈ V the set X contains elements

v, prv, p
g
v, p

b
v.

• For each edge e = {u, v} the set X contains elements

qruv, q
g
uv, q

b
uv, q

r
vu, q

g
vu, q

b
vu.

Hence, X has 4 |V |+ 6 |E| elements.

The system S:

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

32 [200311-0819] Chapter 4. Complexity Classes

1. For every vertex v ∈ V the system S contains:

{v, prv}, {v, pgv}, {v, pbv}.

2. Given vertex v ∈ V , denote the neighborhood of v as N(v) (i.e. N(v) = {u | {v, u} ∈ E).

S further contains:

Sr
v = {prv, qrvu |u ∈ N(v)}, Sg

v = {pgv, qgvu |u ∈ N(v)}, Sb
v = {pbv, qbvu |u ∈ N(v)}.

3. For every edge e = {u, v} the system S contains:

{qruv, qgvu}, {qruv, qbvu}, {qguv, qrvu}, {qguv, qbvu}, {qbuv, qrvu}, {qbuv, qgvu}.

S has 3 |V | sets from 1), 3 |V | sets from 2) and 6 |E| sets from 3).

Assume that G is 3-colorable. Then there is a coloring of V by colors {r, g, b}. Denote the color
of v ∈ V as c(v). Choose A from S as follows:

A consists of:

1. {v, pc(v)
v } for all v ∈ V ,

2. Sc1
v a Sc2

v where c1 and c2 are the colors different from c(v),

3. {qc(u)
uv , q

c(v)
vu } for every edge e = {u, v}.

Assume that there is a partition A ⊆ S of X. Then we define a coloring of vertices of G as
follows:

c(v) := c, c ∈ {r, g, b}, if and only if {v, pcv} ∈ A.
It is not difficult to show that c is a coloring of V by colors r, g, b.

4.4.12 Corollary. Since the Partition problem belongs to NP, it is an NP complete problem.

4.4.13 SubsetSum. Problem: Given positive integers a1, a2, . . . , an and a number K, is it
possible to choose a subset of numbers a1, a2, . . . , an in such a way that their sum is K?

In other words, is there a subset J ⊆ {1, 2, . . . , n} such that∑
i∈I

ai = K.

4.4.14 Proposition. It holds that

Partition problem �p SubsetSum.

Reduction of Partition problem to SubsetSum. Given a finite nonempty set X and a
collection of its subsets S, rename the elements of X so that X = {0, 1, . . . , n − 1}, and let
S = {S1, S2, . . . , Sr}.

Choose a natural number p greater than r (the number of sets in S). To each Si ∈ S assign a
positive number ai as follows: Denote by χSi the characteristic function of Si ∈ S; i.e. χSi(j) = 1
iff j ∈ Si. Then

Si −→
n−1∑
j=0

χSi
(j) pj = ai.

Finally, put K =
∑n−1

i=0 pi.

Since p > r, it is not difficult to show that∑
i∈J

ai = K iff A = {Si | i ∈ J} is a partition of X.

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

4.4. Reductions [200311-0819] 33

4.4.15 Corollary. Since SubsetSum belong to NP, it is an NP complete problem.

4.4.16 Remark. It is not difficult to construct a polynomial reduction of SubsetSum to Knap-
sack problem. Therefore Knapsack problem is an NP complete.

4.4.17 Clique problem. Problem: Given a simple undirected graph G = (V,E) without loops
and a number k, is there a clique in G with at least k vertices?

4.4.18 Proposition. It holds that

3− CNF SAT �p Clique problem.

Sketch of a reduction of 3−CNF SAT to Clique problem. Given a formula ϕ in CNF that
has k clauses C1, C2, . . . , Ck, where each clause contains 3 literals, construct a k-partite undirected
graph G = (V,E) as follows:

The set of vertices of G consists of k three element sets V1, . . . , Vk, where Vi contains the three
literals from clause Ci. For each literal p of Vi and p′ of Vj , i 6= j there is an edge {p, p′} in G if
and only if p and p′ is not a pair of complementary literals (i.e. one is not a negation of the other).

We have that ϕ is satisfiable if and only if there is a clique in G containing k vertices. (Notice
that k is the number of clauses of ϕ.)

Assume that there is a truth valuation u in which ϕ is true. Choose in each clause Ci one literal
pi which is true in u. Now the set A containing from each Vi the vertex denoted by pi, i = 1, . . . , k,
is a clique in G with k elements.

Assume that there is a clique A of G with k vertices. Then A contains one vertex from each set
Vi, i = 1, . . . , k. Set all of the literals from A to be true (i.e. define a truth valuation u in which
all literals from A are true); the truth value of other variables are chosen arbitrarily. Then ϕ is
true in u.

The graph G that was constructed above has its number of vertices equal to its number of
literals in ϕ, i.e. n vertices where n is the length of ϕ. Since a simple graph with n vertices has
O(n2) edges, G has a polynomial size with respect to the size of ϕ. Therefore, it is a polynomial
reduction.

4.4.19 Corollary. Since the Clique problem belongs to NP, it is an NP complete problem.

4.4.20 Independent sets. Given a simple undirected graph G = (V,E) without loops, a set
of vertices N ⊆ V is called an independent set of G if no edge of G has has each of its vertices in
N . In other words, the subgraph induced by N is a discrete graph.

Problem: Given a simple undirected graph G without loops and a number k.
Question: Is there an independent set in G with k vertices?

4.4.21 Proposition. It holds

Clique problem �p Independent sets.

Reduction of Clique problem to Independent sets. Given a simple undirected graph
G = (V,E) without loops, define its opposite graph Gop = (V,Eop) by:

{u, v} ∈ Eop if and only if u 6= v and {u, v} /∈ E.

We have: A set A ⊆ V is a clique in G if and only if it is a maximal independent set in Gop.

It is a polynomial reduction because a complete graph on n vertices has n(n−1)
2 edges. Hence

the number of edges in G plus the number of edges of Gop is O(n2).

4.4.22 Corollary. Since the problem of independent sets belongs to NP, it is an NP complete
problem.

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

34 [200311-0819] Chapter 4. Complexity Classes

4.4.23 Vertex cover. Given a simple undirected graph G = (V,E) without loops. A subset of
vertices B ⊆ V is called a vertex cover of G if every edge of G has at least one end vertex in B.

Note that the set of all vertices V is a vertex cover but not very interesting one. Also, if B is
a vertex cover, so is any B′, B ⊆ B′.
Problem: Given a simple undirected graph G without loops, and an integer k.
Question: Does in the graph G exist a vertex cover with k vertices?

4.4.24 Proposition. It holds that

independent sets �p vertex cover.

4.4.25 A reduction of independent sets to vertex cover. We have: If a set N is an
independent set of G then the set V \N is a vertex cover of G. Conversely, if B is a vertex cover
of G then the set V \B is an independent set in G.

Therefore, if a simple undirected graph G without loops and an integer k are given, then G has
an independent set with k vertices if and only if there is a vertex cover in G with n − k vertices
(n = |V | is the number of vertices of G).

4.4.26 Corollary. Since the vertex cover problem is in the class NP, it is an NP complete
problem.

4.4.27 Existence of a Hamiltonian cycle. Given a directed graph G.

Question: Does G have a Hamiltonian cycle? (In other words, is there a cycle containing all
vertices of G?)

4.4.28 Proposition. It holds that

vertex cover �p existence of Hamiltonian cycle.

4.4.29 Sketch of a reduction of vertex cover to existence of Hamiltonian cycle. On
of reductions is based on a special graph H with 4 vertices and 6 directed edges. Graph H has the
following property: If H is a part of a Hamiltonian cycle then there are just two way how to visit
vertices of H; either all vertices are visited consecutively, or H is visited twice, at first two vertices
and later another two vertices.

Assume that a simple undirected graph G = (V,E) without loops and an integer k are given.
A directed graph G′ can be constructed such that in G there is a vertex cover with k vertices if
and only if in G′ there is a Hamiltonian cycle.

Informally, the graph G′ is constructed as follows: For each edge e of G the graph G′ contains
one copy of H. Moreover, G′ contains also vertices 1, 2, . . . , k. So, the number of vertices of G′

equals to 4 |E|+ k. Edges of G′ are edges of all copies of H, edges joining copies of H, and edges
from and to vertices 1, 2, . . . , k. (All together in G′ there are at most eight times the number of
edges of G plus twice the number of k times the number of vertices of G. So the size of G′ is a
polynomial with respect to the size of G.

4.4.30 Corollary. Since the existence of a Hamiltonian cycle is in NP, it is an NP complete
problem.

4.4.31 Existence of a Hamiltonian circuit. Similarly as for existence of a Hamiltonian cycle
one can prove that the problem of vertex cover polynomially reduces to existence of Hamiltonian
circuit. Only the auxiliary graph is more complicated. Hence it can be proved that:

4.4.32 Corollary. Since the existence of a Hamiltonian circuit is in NP, it is an NP complete
problem.

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

4.5. Heuristics and Approximation Algorithms [200311-0819] 35

4.4.33 Proposition. It holds that

existence of a Hamiltonican circuit �p TSP.

There is a very easy polynomial reduction of the fact above, and it is left for the reader to construct
it.

4.4.34 Corollary. Since TSP is in NP, it is an NP complete problem.

4.4.35 Existence of an open directed Hamiltonian path. It is easy to construct a
polynomial reduction from the problem of existence of a Hamiltonian cycle to existence of an
open Hamiltonian path. Such reduction will be one of the problems of tutorials. So, also existence
of an open Hamiltonian path is NP complete problem.

4.4.36 Proposition. It holds that

Existence of a directed Hamiltonian path �p longest paths in a directed graph.

Also this polynomial reduction is easy and it is left for the reader

4.4.37 Corollary. Since the problem of longest paths in a weighted directed graph is in NP,
it is an NP complete problem.

4.4.38 Proposition. It holds that

longest paths in a directed weighted graph �p shortest paths in a directed weighted graph.

Again, a polynomial reduction is left to the reader.

4.4.39 Corollary. Since the problem of shortest paths in a directed weighted graph belong to
the class NP, it is an NP complete problem.

4.5 Heuristics and Approximation Algorithms

4.5.1 Heuristics. If we have to solve a problem which is NP complete it is not possible to find
a correct or optimal solution in a reasonable time; till now we can, within a polynomial time, obtain
”reasonably correct” answer or ”reasonably good” solution. For this purpose heuristic algorithms
that work in a polynomial time are used. Polynomial algorithms for which it can be proved ”how
far from an optimal solutions” their results are, are also called approximation algorithms.

4.5.2 A heuristics for vertex cover problem — 1. Consider the following heuristic algo-
rithm which for a given undirected graph finds its vertex cover. The algorithm is based on so called
greedy strategy.

Input: an undirected graph G = (V,E).

Output: a vertex cover C of G.

begin

C := ∅
while E 6= ∅ do

choose a vertex v with the biggest degree
C := C ∪ {v}
delete v together with all edges incident with it

end

return C

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

36 [200311-0819] Chapter 4. Complexity Classes

Even though the algorithm above ”looks reasonable”, it in some cases finds a vertex cover which
has considerably more vertices than an optimal one. What is meant by ”considerably more”: there
is a graph which has a vertex cover with k vertices but the algorithm above finds a vertex cover
with Θ(k lg k) vertices.

4.5.3 A heuristics for vertex cover problem — 2. There is another heuristic algorithm for
the vertex cover problem.

Input: an undirected graph G = (V,E).

Output: a vertex cover C of G.

begin

C := ∅
while E 6= ∅ do

choose an edge {u, v}
C := C ∪ {u, v}
delete vertices u, v together with all edges incident with it

end

return C

It is not difficult to show that the vertex cover produced by the algorithm above has at most
twice the number of vertices than an optimal vertex cover of G.

4.5.4 Proposition. Denote by Cmin a vertex cover with the minimum number of vertices of G.
The the second heuristics find a vertex cover C such that

|C| ≤ 2 |Cmin|.

Proof. Denote by F the set of all edges that were chosen by the algorithm during its work. Then
|C| = 2 |F |; indeed, for every edge chosen, we put two its vertices into C — the end vertices of this
edge. Moreover, no two edges of F share a common vertex; therefore to cover edges of F we need
|F | vertices. Hence, |Cmin| ≥ |F | and |C| = 2 |F | ≤ 2 |Cmin|.

4.5.5 Approximation algorithms. Definition. Consider an optimization problem U . A
polynomial algorithm A is called and R approximation algorithm if the number R satisfies: For
each instance i of the problem U the algorithm A returns a feasible solution of I whose value is
not worse than R times the value of an optimal solution.

”Not worse than” means that for a minimization version the value of it is at most R times
bigger than the value of an optimal solution, for maximization problem the value is at most R
times smaller than the value of an optimal solution.

In fact, the second heuristics is 2 approximation algorithm of the problem of vertex cover, since
evidently it is a polynomial algorithm.

Not for all problems the decision version of them are NP complete approximation algorithms
exist (if we assume that P 6= NP). TSP can serve as one of the examples.

4.5.6 Propositon. If there is a number r and a polynomial algorithm A such that for every
instance I of TSP A returns a tour of length D ≤ r OPT (I) (where OPT (I) is the length of an
optimal tour for I) then

P = NP.

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

4.6. Class co-NP [200311-0819] 37

Proof. We show that if an algorithm from the proposition 4.5.6 exists then we would be able
to solve the problem of existence of a Hamiltonian circuit in polynomial time. Let us sketch the
arguments

Given an undirected graph G = (V,E), V = {1, 2, . . . , n}; our task is to decide whether
G contains a Hamiltonian circuit. Let us construct an instance of TSP as follows: For towns
{1, 2, . . . , n} define

d(i, j) =

{
1, {i, j} ∈ E

r n+ 1, {i, j} 6∈ E

Any tour of the instance above has length n if and only if it contains only edges of length, i.e.
edges of the graph G and the tour is in fact a Hamiltonian circuit. If a tour contains at least one
edge which does not belong to G then its length is at least n− 1 + n r + 1 = n r + n.

Hence, if the algorithm A returns a tour different than n, then in G there is no Hamiltonian
circuit. Indeed, r n+n is greater than r n. We have shown that we would be able to polynomially
decide whether G has a Hamiltonian circuit or not. Since the problem of existence of a Hamiltonian
circuit is NP complete, it would mean that P = NP.

4.5.7 Remark. If an instance I of a TSP satisfies the triangle inequality, i.e. if it holds that
for every towns i, j, k we have:

d(i, j) ≤ d(i, k) + d(k, j),

then there is a 2 approximation and even 3
2 algorithm for TSP.

4.6 Class co-NP
4.6.1 Observation. If a language L belongs to P, then so does its complement L. It is not
known if an analogous assertion also holds for languages that belong to NP.

4.6.2 Definition. A language L belongs to the class co-NP if its complement is in NP.

4.6.3 Examples.

• The language USAT , which is a complement of the language SAT (of satisfiable Boolean
formulas), belongs to co − NP. (The language USAT consists of all unsatisfiable Boolean
formulas and all words that do not correspond to any Boolean formula.)

• The language TAUT consists of all words representing tautologies of the propositional logic
and belongs to co−NP.

4.6.4 Question whether co-NP = NP is an open problem.

4.6.5 Lemma. Given two languages L1 and L2 for which L1 �p L2. Then also L1 �p L2,
(where L is the complement of the language L).

Proof. The fact that L1 �p L2, L1 ⊆ Σ?, L2 ⊆ Φ? means that there exists a polynomial algorithm
M which for every word w ∈ Σ? constructs a word M(w) ∈ Φ? in such a way that

w ∈ L1 if and only if M(w) ∈ L2.

This means that

w 6∈ L1 if and only if M(w) 6∈ L2,

and thus L1 �p L2.

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

38 [200311-0819] Chapter 4. Complexity Classes

4.6.6 Proposition. It holds that co-NP = NP if and only if there is an NP complete language
the complement of which belongs to NP.

Proof. If co-NP = NP then every complement of a NP complete language belongs to NP,
therefore there is an NP complete language the complement of which belongs to NP.

Assume that there is an NP complete language L whose complement L belongs to NP. We
show that
co-NP ⊆ NP a NP ⊆ co-NP.

Consider an arbitrary language L1 from the class co-NP. Then L1 ∈ NP. Since L is NP
complete language, L1 �p L, and by the lemma above L1 �p L ∈ NP. Threfore L1 ∈ NP.

Consider an arbitrary language L2 for which L2 ∈ NP. Then L2 �p L, and hence (by the
lemma above) L2 �p L ∈ NP. Therefore L2 ∈ co-NP.

4.7 Classes PSPACE and NPSPACE

4.7.1 Given a Turing machine M (deterministic or nondeterministic), we say that M works
with space complexity p(n), if for every word of length n, M uses at most p(n) tape cells.

4.7.2 Class PSPACE. A language L belongs to PSPACE if there exists a deterministic Turing
machine M that accepts L and works with polynomial space complexity.

4.7.3 Proposition. It holds

P ⊆ PSPACE.

4.7.4 Class NPSPACE. A language L belongs to the class NPSPACE if there exists a
nondeterministic Turing machine M that accepts L and works with polynomial space complexity.

4.7.5 Proposition. It holds

NP ⊆ NPSPACE.

4.7.6 Theorem. If a Turing machine M (deterministic or nondeterministic) accepts a language
L with space complexity p(n), then there is a constant c ≥ 1 such that M accepts any word w ∈ L
of length n after at most cp(n)+1 steps.

Idea of the proof. The constant c is chosen so that for an input word of length n the Turing
machine M has less than cp(n)+1 different IDs. Indeed, if a word w is accepted by M , then it is so
with computations that do not enter the same ID twice.

Denote by t the number of tape symbols of M and s the number of states of M . Then M has
p(n) s tp(n) different IDs.

Put c = t+ s. From the Binomial Theorem we have

cp(n)+1 = (t+ s)p(n)+1 = tp(n)+1 + (p(n) + 1) tp(n) s+

Therefore, cp(n)+1 ≥ p(n) tp(n) s.

4.7.7 Theorem. If a language L belongs to PSPACE (NPSPACE), then L is decided by a
deterministic (nondeterministic) Turing machine M with polynomial space complexity that halts
always after at most cq(n) steps, where q(n) is a polynomial and c is a constant.

Idea of the proof. Assume that a language L belongs to PSPACE. Then there is a Turing
machine M1 that accepts the language L with space complexity p(n) (p(n) is a suitable polynomial).
We know (see 4.7.6), then there is a constant c such that the Turing machine M1 needs at most
cp(n)+1 steps.

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

4.7. Classes PSPACE and NPSPACE [200311-0819] 39

Construct a Turing machine M2 that has two tapes: the first one simulates M1; the second
one counts steps made in the first tape. If the number of steps exceeds cp(n)+1, then M2 halts
unsuccessfully.

The required Turing machine M is the Turing machine with one tape that simulates M2. M
works with time complexity O(c2p(n)), so it will halt in at most d c2p(n) steps. Now, if we put
q(n) = 2p(n) + logc d or any polynomial bounded below by q(n) (for all n) we get the required
statement.

4.7.8 Savitch’s Theorem. It holds

PSPACE = NPSPACE.

Idea of the proof. Clearly, PSPACE ⊆ NPSPACE. Proof of the opposite inclusion
NPSPACE ⊆ PSPACE is based on the fact that for a nondeterministic Turing machine M
we are able to construct a deterministic Turing machine M1 that decides the language L(M) and
works with polynomial space complexity (even though time complexity may be exponential).

Given a nondeterministic Turing machine M that decides L with polynomial space complex-
ity p(n), a deterministic Turing machine that decides the same language as M with polyno-
mial space complexity can be constructed by introducing a Boolean recursive procedure called
REACH(I, J,m), where I and J are IDs and m is a number.

REACH(I, J ;m)

Input: ID’s I and J of an NTM M , and m a positive integer.

Output: TRUE if J is reachable from I in at most m steps, otherwise FALSE.

begin

if m = 1 then

if I = J or I ` J then return TRUE
else return FALSE

end

else (inductive part]
for every possible ID K do

if REACH(I,K; bm2 c) and REACH(K,J ; dm2 e then
return TRUE

return FALSE
end

end

Let w be an input word; we call procedure REACH(I0, J,m) for the initial ID I0, an accepting
ID J of M and m = cp(n)+1 (where c is the constant from 4.7.6). It can be proved that a
deterministic Turing machine requires only O([p(n)]2) tape cells to make all recursive calls of
REACH(I, J,m). (Note that we only claim that the space complexity is polynomial; the time
complexity may be, and often is, exponential.)

Notice that during the work of the procedure REACH(I, J ;m), on the stack there is only at
most one triple (I1, J1;m), at most one triple (I2, J2; m

2), at most one triple (I3, J3; m
4), etc. Thus

at the same time, the stack contains at most lgm distinct triple at one time.

Given a nondeterministic Turing machine M that accepts L with a polynomial space complexity
p(n). Given an input word w, we call procedure REACH(I0, J ;m) where I0 is an initial ID of
M , J is an accepting ID of M , and m = cp(n)+1 (c is the constant from 4.7.6). It can be proved
that for an execution of REACH(I, J ;m) by a deterministic Turing machine, space complexity
O([p(n)]2) is sufficient. Indeed, it follows from the fact that REACH(I0, J ;m) has on it stack at
most lg cp(n)+1 = d p(n) triples (I, J ; r) and each triple has length at most O(p(n)). (Note that
we are interested only in space complexity; the deterministic Turing machine can use exponential
number of steps.)

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

40 [200311-0819] Chapter 4. Complexity Classes

4.7.9 Corollary. It holds
P ⊆ NP ⊆ PSPACE.

4.7.10 Remark. If we define a class EXP for all languages that are solved by a deterministic
Turing machine in exponential number of steps (with respect to the size of an input) then theorem
4.7.7 together with Savitch’s Theorem imply that

PSPACE ⊆ EXP.

4.8 Primality Testing

4.8.1 Languages Lp and Ls. Let language Lp be the set of all prime numbers and Ls be the
set of all composite numbers; more precisely:

Lp = {w |w is a prime number in binary}

Ls = {w |w is a composite number in binary}.

The language Ls is ”nearly” the complement of Lp, only the number 1 does not belong to either
set. Hence, we add 1 into Ls and get

Ls = Lp, Lp = Ls.

4.8.2 Proposition. Ls belongs to NP.

Proof: A number n is composite if and only if there exist integers r and s such that n = rs, r < n
and s < n. If we know r, we can easily verify that r divides n and that r < n; the existence of the
given r proves that n is composite. Of course an r satisfying the necessary conditions n = rs and
1 < r < n does not exist for prime numbers.

The above consideration shows that r is the required certificate of polynomial length. Indeed,
the length of any number smaller than n is O(k), where k = lg n is the size of the input n.
Moreover, integer division of two numbers in binary can be carried out in polynomial time with
respect to the length of the binary words, i.e. k.

4.8.3 Corollary. Lp belongs to co-NP.

4.8.4 Proposition. Lp belongs to NP.

Finding a polynomial certificate for the language of all prime numbers is considerably more
difficult than for the language of composite numbers. Here is a generator of the group (Zp\{0},�, 1)
(p a prime number); in another words, a primitive element of the finite field (Zp,⊕,�, 0, 1).

4.8.5 Corollary. Languages Lp and Ls belong to the intersection of NP and co-NP.

4.8.6 Furthermore, we show that there is a probabilistic algorithm, called the Miller-Rabin
primality test, that for a large odd integer nhas at least a 50 % chance of deciding if n is prime.
Before discussing the test, let us review several facts that will be needed:

• Set Zn of classes modulo n consists of

Zn = {0, 1, . . . , n− 1}.

• There are two operations ⊕ and � on Zn defined by

a⊕ b = c, where c is the remainder when a+ b is divided by n,

a� b = c, where c is the remainder when ab is divided by n.

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

4.8. Primality Testing [200311-0819] 41

• (Zn,⊕, 0) is a commutative group; (Zn,�, 1) is a commutative monoid. Distributive laws
hold between � and ⊕.

Moreover, there is an inverse element for a ∈ Zn (with respect to �) if and only if a and n
are relatively prime.

Hence, (Zn,⊕,�, 0, 1) is a field whenever n is prime n. If n is composite, then (Zn,⊕,�, 0, 1)
is not a field (it has zero divisors).

• Theorem (Small Fermat Theorem): If a and p are relatively prime for prime number p then

ap−1 ≡ 1 (modn).

• Given a finite group G and its subgroup H, then the number of elements of H divides the
number of elements of G.

• Operations addition, multiplication, division and taking powers in Zn can be carried out
in polynomial time with respect to the size of numbers that are involved in the operations.
(Recall that the size of a number n is lg n.)

4.8.7 Miller-Rabin primality test.

Input: a large odd natural number n.

Output: prime or composite.

1. Compute n− 1 = 2lm where m is odd.

2. Randomly choose a ∈ {1, 2, . . . , n− 1}.

3. Compute am (modn),
if am ≡ 1 (modn) halt; output prime.

4. By repeated squaring compute

a2m (modn), a22 m (modn), . . . , a2l m (modn).

5. If a2l m 6≡ 1 (modn) halt; output composite.

6. Take k such that a2k m 6≡ 1 (modn) and a2k+1 m ≡ 1 (modn), then

if a2k m ≡ −1 (modn) halt, output prime;

if a2k m 6≡ −1 (modn) halt, output composite.

4.8.8 Theorem.

1. If Miller-Rabin primality test for n outputs composite, then n is composite.

2. If Miller-Rabin primality test for n outputs prime, then n is prime with probability at least
1
2 .

Informal argument for the theorem 4.8.8. Add 1. If n is prime, then Miller-Rabin primality
test cannot halt in step 5. Indeed any a ∈ {1, . . . , n− 1} is relatively prime to n and hence, by the

Small Fermat Theorem, we have a2l m ≡ 1 (modn).
Furthermore, if n prime, then (Zn,⊕,�) is a finite field and there are only two elements b with

b2 = 1, namely b = 1 or b = −1. Hence the algorithm cannot halt with output composite.

Add 2. Showing the other assertion is more complicated. The proof is not difficult for those
composite numbers n for which there exists at least one a ∈ Zn: a and n relatively prime,

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

42 [200311-0819] Chapter 4. Complexity Classes

and an−1 6≡ 1 (modn). For other composite numbers, called Carmichael numbers, (also pseudo
primes), the proof is rather difficult.

We show the main idea of the proof: The proof is based on the fact that the number of a’s
chosen in step 2 for which the algorithm gives the correct output composite is at least as big as the
number of a’s for which the algorithm gives the incorrect output prime. Since each a is chosen with
the same probability, it suffices to show that there are more a’s for which the output is composite
than those a’s for which the output is prime.

Assume that the a chosen in step 2 is not relatively prime to n. Then we must get the output
composite, since no power of a equals 1 in Zn.

Assume that a composite number n is not Carmichael, in other words there exists a ∈ Zn, a
and n relatively prime, and an−1 6≡ 1 (modn). Denote this by

Z?
n = {a ∈ Zn | a is invertible}

K = {a ∈ Z?
n | an−1 = 1}.

We know that K 6= Z?
n; at the same time (K,�) is a subgroup of the group (Z?

n,�). Therefore,
the number of elements of K divides the number of elements of Z?

n. Hence the number of elements
of K is at most half of the number of elements Z?

n; in other words

|Z?
n \K| ≥ |K|.

If we choose a ∈ Z?
n \K we get the correct output composite, since an−1 6= 1.

The incorrect output composite might be obtained (not necessarily) only for those a’s that
belong to K, and we have |K| ≤ |Z?

n \K|.

If n is Carmichael, then |K| = |Z?
n|, and we must show that in step 6 there are at least the

same number of a’s for which we get a square root of 1 different from −1 as the number of a’s for
which we get −1 as a square root of 1.

4.9 Classes based on randomization

4.9.1 Randomized Turing machines. A RTM is, roughly speaking, a Turing machine M
with two tapes in which the first tape has the same role as it does for a deterministic Turing
machine and the second tape contains a sequence of 0 and 1 generated equiprobably (contains 0
or 1 with equal probability 1

2).

At the beginning of its work:

• M is in its initial state q0;

• the first tape contains the input word w, other cells contain blank B;

• the second tape contains a randomly generated sequence of 0s and 1s;

• other tapes (if any) contain only Bs;

• every head scans the first cell of its tape.

According to the state q in which M is, and to the content of the scanned cells of tapes, the
transition function δ of M determines ifr M halts, or M does in one step the following actions:

• changes its state,

• rewrites the content of the first tape (but does not change the content of second tape),

• moves each of its heads either to the right or to the left or does not move (the moves of heads
are independent).

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

4.9. Classes based on randomization [200311-0819] 43

Formally, M = (Q,Σ,Γ, δ, q0, F), where Q, Σ, Γ, q0, B and F have the same meaning as they did
for a DTM. The transition function δ is a partial function from Q×Γ×{0, 1}? to Q×Γ×{L,R, S}2.

If M is in a state q, then the first head scans symbol X, the second head scans number a, and
if

δ(q,X, a) = (p, Y,D1, D2), q, p ∈ Q, a ∈ {0, 1}, X, Y ∈ Γ, D1, D2 ∈ {L,R, S},

then M changes its state to p; on the first tape writes Y ; and the i-th head moves to the right if
Di = R, or to the left if Di = L, or does not move if Di = S.

If δ(q,X, a) is not defined, then M halts.

M halts successfully if and only if it enters a final (accepting) state q ∈ F .

4.9.2 Remark. The difference between a deterministic Turing machine and a randomized
Turing machine is the role of the second tape. A DTM with two tapes can rewrite the contents of
both tapes which is forbidden for a RTM. Moreover, if an RTM runs twice on the same input, the
two computations may be different (the computation depends on the content of the random tape).
This is not possible for a DTM with 2 tapes.

To realize a random tape — we are not able to fill an infinite random tape before starting the
work of an RTM — we use the following: whenever a new cell of a random tape is scanned an RTM
randomly chooses either 0 or 1 (both with the same probability 1

2). This symbol never changes
during the computation of RTM.

4.9.3 Example. Given a RTM M where Q = {q0, q1, q2, q3, qf}, Γ = {0, 1, B} and the transition
function δ is defined by the following table:

0, 0 1, 0 0, 1 1, 1 B, 0 B, 1
→ q0 (q1, 0, R, S) (q2, 1, R, S) (q3, 0, S,R) (q3, 1, S,R) − −

q1 (q1, 0, R, S) − − − (q4, B, S, S) −
q2 − (q2, 1, R, S) − − (q4, B, S, S) −
q3 (q3, 0, R,R) − − (q3, 1, R,R) (q4, B, S, S) (q4, B, S, S)

← q4 − − − − − −

Assume that the input of M is the word w, then:

• If the first random bit is 0 (i.e. 0 was randomly generated at first), then M checks whether
either w = 0n or w = 1n for some n > 0.

• If the first random bit is 1 (i.e. 1 was randomly generated at first), then the head of the
random tape moves to the right and M whether the content of the random tape starting at
second cell coincide with the input w.

Otherwise, M halts unsuccessfully.

For an RTM one has to calculate the probability that for a given input w the M halts
successfully, i.e. it halts in an ”accepting” state qf . In our example, the answer is the following:

• If w is the empty word then M never halts in qf (i.e. for no content of the random tape).

• If either w = 0n or w = 1n for n > 0, then M halts in qf with probability

1

2
+

1

2

(
1

2

)n

=
1

2
+ 2−(n+1).

• If w contains both 0 and 1, then the probability that M halts in qf is

1

2

(
1

2

)|w|
= 2−(|w|+1).

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

44 [200311-0819] Chapter 4. Complexity Classes

4.9.4 Class RP. A language L belongs to RP if and only if there exists a RTM M such that:

1. If w 6∈ L then M accepts in state qf ∈ F with probability 0.

2. If w ∈ L then M accepts in state qf ∈ F with probability at least 1
2 .

3. There exists a polynomial p(n) such that every computation of M (i.e. for any content of
the random tape) M needs at most p(n) steps, where n is the length of an input word.

The Miller-Rabin primality test is an example of an algorithm satisfying the three conditions
of 4.9.4 (if we construct a corresponding RTM) and therefore the language Ls which consists of all
composite numbers belongs to RP.

4.9.5 Turing machine of type Monte-Carlo. A RTM satisfying conditions 1 and 2 from
4.9.4 is called a Turing machine of type Monte-Carlo.

Note that a Monte-Carlo TM does not need to work in a polynomial time.

4.9.6 Proposition. Given a language L ∈ RP, for every positive constant 0 < c < 1
2 there

exists a RTM M (an algorithm) with polynomial complexity such that:

1. If w 6∈ L, then M accepts in state qf ∈ F with probability 0.

2. If w ∈ L, then M accepts in state qf ∈ F with probability at least 1− c.

4.9.7 Class ZPP. A language L belongs to ZPP if and only if there exists a RTM M such
that:

1. If w 6∈ L then M halts in an accepting state qf ∈ F with probability 0.

2. If w ∈ L then M halts in an accepting state qf ∈ F with probability 1.

3. The expected number of steps of M during one computation over an input of length n is
p(n), where p(n) is a suitable polynomial.

Roughly speaking: M does not make a mistake, but it is not guaranteed that the number of
steps is always polynomial; only the expected number of steps is polynomial.

4.9.8 Turing machine of type Las-Vegas. A RTM satisfying all three conditions from
definition 4.9.7 is called a Las Vegas Turing machine.

4.9.9 Proposition. If a language L belongs to ZPP, then so does its complement L.

The same RTM M of type Las-Vegas serves for ”accepting” L and well as its complement L;
it suffices to declare accepting states as non-accepting and non-accepting states as accepting ones.

4.9.10 Remark. It is not known if a similar assertion hold for languages in RP.

4.9.11 Class co-RP. A language L belongs to co-RP if and only if its complement L belongs
to RP.

4.9.12 Theorem.
ZPP = RP ∩ co-RP.

Proof. First, we show that RP ∩ co-RP ⊆ ZPP.

Assume that a language L belongs to each of classes RP and co-RP. Then there exist two
RTM’s M1 and M2 each of type Monte-Carlo with polynomial time requirements such that

M1 — is for L;

M2 — is for L.

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

4.9. Classes based on randomization [200311-0819] 45

Denote by p(n) the polynomial that is an upper bound for the number of steps for M1 and M2.
Construct a RTM M for the language L as follows: Given an input word w,

1. M executes M1 for p(n) steps. If M1 accepts, then M accepts (enters its accepting state).

2. M executes M2 for p(n) steps. If M2 accepts, then M rejects (enters a non accepting state
and halts).

3. If M does not halt in step 1 or 2, M repeats 1 and 2. (until it halts either in 1 or 2.).

It can be proved that the above M does not make a mistake and, moreover, it is of type Las-Vegas.

Now let us prove that ZPP ⊆ RP ∩ co-RP.

Assume that L belongs to ZPP. Thus there is a RTM M1 of type Las-Vegas for L. Denote by
p(n) the polynomial that bounds the expected number of steps of M1 for any input of length n.
We construct a RTM M of type Monte-Carlo with polynomial time requirements for L as follows:

Given an input w; M executes M1 for 2p(n) steps. If M1 accepts, then so does M ; in all other
cases M halts without accepting.

It can be proven that M satisfies the first two conditions from 4.9.4, i.e. is of type Monte-Carlo.
Moreover, it works in at most 2p(n) steps, hence it is a polynomial Monte-Carlo RTM. This proves
that L belongs to RP.

Since ZPP is closed under complements, every language from ZPP is also in co-RP.

4.9.13 Theorem. We have

P ⊆ ZPP, RP ⊆ NP, co-RP ⊆ co-NP.

The first inclusion is evident; indeed every deterministic Turing machine with polynomial
complexity can be considered as a Las-Vegas RTM.

The second inclusion is less evident. The proof constructs, for a Monte Carlo RTM M , a non-
deterministic Turing machine N such that L(N) consists of all words for which there is a content
of the random tape M that leads to an accepting state. Moreover, if M works in a polynomial
time so does N .

The third inclusion is an easy consequence of the second one and the definitions of RP and
co-NP.

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

46

Chapter 5

Undecidability

5.1 Recursive and recursively enumerable languages

5.1.1 Recursively enumerable (RE) languages. A language L is said to be recursively
enumerable, denoted RE, if there exists a Turing machine M that accepts L, i.e. for which
L = L(M).

In other words, there is a TM M such that for every w ∈ L it accepts in state qf ∈ F ; for
w 6∈ L either M halts in non-accepting state or does not halt at all.

5.1.2 Recursive languages. A language L is said to be recursive if there exists a Turing
machine M that decides L.

Note that a TM M decides a language L if and only if M halts on every input w, and if w ∈ L,
then it halts in q ∈ F , and if w 6∈ L, it halts in p 6∈ F .

5.1.3 Remark. Languages that are not recursive are also called algorithmically unsolvable or
undecidable. Similarly, we speak of undecidable or algorithmically unsolvable problems. Decision
problems are usually called undecidable. The term algorithmically unsolvable is used usually for
optimization problems.

Every recursive language is also RE, but note that the converse does not hold. We will show
that there are languages that are RE but not recursive.

5.1.4 Proposition. If a language L is recursive then so is its complement L.

5.1.5 Proposition. If a language L and its complement L are both RE, then they are recursive.

5.1.6 Proposition. Given a language L, one of the following possibilities occurs:

1. L and L are both recursive.

2. One of L and L is RE and the other is not RE.

3. L and L are not RE.

5.1.7 Code of a Turing machine. Every Turing machine M can be coded as a binary word.
Indeed, denote parts of a TM M as follows: the set of states Q = {q1, q2, . . . , qn}, the set of input
symbols Σ = {0, 1}, the set of tape symbols Γ = {X1, X2, . . . , Xm}, where X1 = 0, X2 = 1 a
X3 = B, the initial state by q1 and the final state q2. Also, denote a rightward move D1 and
leftward move D2. (It means D1 = R and D2 = L.)

One entry of the transition function δ

δ(qi, Xj) = (qk, Xl, Dr)

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

5.1. Recursive and recursively enumerable languages [200311-0819] 47

corresponds to the following word
t = 0i10j10k10l10r.

A code of M , we denote it by 〈M〉, is then

〈M〉 = 111 t1 11 t2 11 . . . 11 tp 111,

where t1, . . . , tp are words corresponding to all entries of the transition function of M .

5.1.8 A given binary word w can be enumerated in the following way: form 1w and regard it
as a natural number written in binary. For instance, ε is the first word, 0 is second, 1 is third,
etc., 100110 is 1100110 = 64 + 32 + 4 + 2 = 102; in other words 100110 is the 102nd word in the
numbering. In what follows, a binary word which is the i-th position is considered as wi. Hence,
w1 = ε, w102 = 100110, etc.

This method is an ordering by length and, for words of equal length, by lexicographic sorting.

5.1.9 Diagonal language Ld. First, let us make the following convention: If a binary word
w does not have the form from 5.1.7 it is considered an encoding of Turing machine M with no
transition, so it accepts no word (i.e. L(M) = ∅).

The language Ld consists of all binary words w such that the Turing machine encoded by w
does not accept w. (Therefore, Ld also contains all words w that are not codes of any Turing
machine, but it contains other words as well.)

5.1.10 Theorem. There is no Turing machine that accepts the diagonal language Ld. In other
words, Ld 6= L(M) for every Turing machine M .

Sketch of the proof. We proceed by contradiction. If there were a Turing machine M0 such that
Ld = L(M0), then M0 has a code that is a binary word, i.e. 〈M〉 = wi for a suitable i.

Then either wi belongs or does not belong to Ld, but both possibilities lead to a contradiction.

Assume that wi ∈ Ld. Then wi satisfies the following condition: the Turing machine with code
wi does not accept wi. But Ld = L(M0) where wi = 〈M0〉 — a contradiction.

Assume that wi 6∈ Ld = L(M0). Then the Turing machine with code wi does not accept wi.
But the definition of Ld implies that wi belongs to Ld — a contradiction.

Therefore, there is no Turing machine that accepts Ld.

5.1.11 The universal language. The universal language LU is the set of all words of the form
〈M〉#w where 〈M〉 encodes a Turing machine that accepts the word w ∈ {0, 1}?, i.e. w ∈ L(M).

5.1.12 Universal Turing machine. We roughly describe a Turing machine that accepts the
universal language LU . (Such a Turing machine is called a universal Turing machine and we denote
it by U .)

A universal Turing machine U has 4 tapes. The first tape contains the input, i.e. the word
〈M〉#w, the second tape simulates the tape of the Turing machine M over w, and the third tape
contains the code of the state in which M is. Further, U has an auxiliary tape; it is the fourth
tape.

At the beginning, the Turing machine U has the input 〈M〉#w on its first tape, other
tapes contain only blanks B. Recall that an encoded TM looks as follow:: Assume that M is
(Q, {0, 1}, {0, 1, B}, δ, q1, {q2}), where Q = {q1, q2, . . . , qn}. Denote 0 by X1, 1 by X2, and B by
X3, R will be D1, L will be D2. Then entries of the transition function δ(qi, Xj) = (qk, Xl, Dm)
are encoded by

t = 0i10j10k10l10m, where 1 ≤ i, k ≤ n, 1 ≤ j, l ≤ 3, 1 ≤ m ≤ 2.

Turing machine M has the code

111 t1 11 t2 11 . . . 11 tr 111.

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

48 [200311-0819] Chapter 5. Undecidability

The Turing machine U at first checks whether the input is a code of a Turing machine M
followed by a binary word w. If not, U halts unsuccessfully.

If the input has the form 〈M〉#w for a TM M (which has some moves), U rewrites w on the
second tape and it writes 0 on the third tape. The reason is that at the start of execution, M is
in state q1, which is coded as 0.

Now TM U simulates the steps of M in such a way that if M enters the state q2 (final,
”accepting” state of M), U halts successfully. This can be easily recognized: the third tape will
have 00 surrounded by blanks.

Note that the construction of U needs further technical details; e.g. when the word w is copied
on the second tape of U , the same coding of 0 and 1 is used as when forming a code of a word. It
means that 0 is 10, 1 is 100. If blank of M is required on the second tape, it is written 1000.

5.1.13 Corollary. The universal language LU is RE.

5.1.14 Proposition. LU is not recursive.

Assume that LU is recursive then there exists a TM M1 which decides LU . I.e. M always
halts, successfully on words from LU , unsuccessfully on words not belonging to LU . Using M1 we
could decide the diagonal language Ld and we know that Ld is not even recursively enumerable,
see 5.1.10.

5.1.15 Reductions. Recall the definition of a reduction from 4.3.1.

Given two decision problems U and V, U reduces to V if there exists an algorithm (a program
for RAM, a Turing machine) A that for every instance I of U constructs an instance I ′ of V in
such a way that

I is YES instance of U iff I ′ is YES instance of V.

Denote a reduction of U to V as
U � V.

This definition is important for languages as well. A decision problem is viewed as the language
of all words that are YES instances.

5.1.16 Proposition. Given two decision problems U and V such that U � V, we have:

1. U undecidable implies V undecidable.

2. U not in RE implies V not in RE.

3. V recursive implies U recursive.

5.1.17 Proposition. Given two languages

Le = {M |L(M) = ∅}, Lne = {M |L(M) 6= ∅},

Lne is RE but not recursive and Le is not RE.

5.1.18 Remark. Notice that Le is the complement of Lne. Indeed, if a word w doess not encode
any Turing machine, then it encodes a TM with no moves, so it belongs to Le.

We can use the universal Turing machine U for showing that Lne is RE. From the reduction
LU � Lne and 5.1.16, we get Lne is not recursive. The fact that Le is not RE then follows from
5.1.6.

5.1.19 Theorem (Rice). Any nontrivial property of RE languages is undecidable.

By a nontrivial property we mean a property that some RE language has and some RE language
does not have.

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

5.2. Other undecidable problems [200311-0819] 49

5.2 Other undecidable problems

In this section we introduce further problems/languages that are undecidable. Note that here,
the universal language LUN plays similar role for undecidable languages as the problem (and
corresponding language) SAT plays for NP complete problems/languages.

The first undecidable problem is Post correspondence problem.

5.2.1 Post Correspondence Problem (PCP). Given two lists of words A,B over an alpha-
bet Σ

A = (w1, w2, . . . , wk), B = (x1, x2, . . . , xk),

where wi, xi ∈ Σ?, i = 1, 2, . . . , k, we say that A,B has a solution if there exists a finite sequence
i1, i2, . . . , ir of indexes ij ∈ {1, 2, . . . , k} such that

wi1 wi2 . . . wir = xi1 xi2 . . . xir .

Question: Is there a solution of a given instance?

5.2.2 Examples.

1. Given two lists

1 2 3 4 5
A 011 0 101 1010 010
B 1101 00 01 00 0

This instance has a solution, for example 2, 1, 1, 4, 1, 5 gives

w2 w1 w1 w4 w1 w5 = 00110111010011010 = x2 x1 x1 x4 x1 x5.

2. Given two lists of binary words

1 2 3 4 5
A 11 0 101 1010 010
B 101 00 01 00 0

This instance does not have a solution.

5.2.3 Modified Post Correspondence Problem (MPCP). Given two lists of words A,B
over a given Σ.

A = (w1, w2, . . . , wk), B = (x1, x2, . . . , xk),

where wi, xi ∈ Σ?, i = 1, 2, . . . , k, we say that A,B has a solution if there exists a sequence of
indices 1, i1, i2, . . . , ir, i.e. ij ∈ {1, 2, . . . , k} such that

w1 wi1 wi2 . . . wir = x1 xi1 xi2 . . . xir .

Question: Is there a solution of a given instance?

5.2.4 Remark. MPCP differs from PCP by the fact that in MPCM we require that the solution
must begin with the index 1. The importance of MPCP can be seen from the following theorem.

5.2.5 Theorem. We have

Lu � MPCP � PCP.

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

50 [200311-0819] Chapter 5. Undecidability

5.2.6 Theorem. We have
Lu � MPCP � PCP.

Sketch of the second reduction. Given an instance of MPCP

A = (w1, w2, . . . , wk), B = (x1, x2, . . . , xk),

Assume that # and ∗ do not belong to Σ, Let us construct a new instance of PCP by:

C = (y0, y1, . . . , yk, yk+1), D = (z0, z1, . . . , zk, zk+1),

where

1. for every i = 1, . . . , k the word yi was created from wi in such a way that behind every
symbol of wi we placed ∗; analogously, zi was created from xi by adding ∗ in front of every
symbol of xi.

2. y0 = ∗y1; z0 = z1.

3. yk+1 = ∗#, zk+1 = #.

It is not difficult to see that A,B has a solution 1, i1, . . . , ir if and only if C,D has a solution, and
the solution of C,D must be 0, i1, . . . , ir, k + 1.

The first reduction is more difficult. It consists of a description of the work of a Turing machine
M over a word w by two lists of words.

5.2.7 Corollary. PCP is undecidable.

5.2.8 Remark. If we restrict the length of a sequence of indexes that forms a solution
i1, i2, . . . , ir, (i.e. we restrict value r), the problem becomes algorithmically solvable — there
is a ”brute force” algorithm that produces systemically sequences i1, i2, . . . , is and for every such
sequence it checks whether it is a solution.

At the same time, if A and B are sets (instead of lists) then the problem is polynomially
solvable.

5.2.9 Ambiguous Context Free Grammars. Given a context free grammar G = (N,Σ, S, P),
where N is the set of nonterminal symbols, Σ the set of terminal symbols, S is a start symbol, and
P a set of production rules of the type X → α for X ∈ N , α ∈ (N ∪ Σ)?.

Question: Is there a word w with two different derivation (parse) trees?

5.2.10 Theorem. We have

PCP � Problem whether a given CF grammar is ambiguous.

5.2.11 Idea of the proof of 5.2.10. Given an instance of PCP, i.e. two lists A =
(w1, w2, . . . , wk) and B = (x1, x2, . . . , xk). We construct a CF grammar G = ({S,A,B},Σ ∪
{a1, a2, . . . , ak}, S, P) where P contains the following rules

S → A | B,

A→ w1Aa1 | w2Aa2 | . . . |wk Aak,

A→ w1 a1 | w2 a2 | . . . |wk ak,

B → x1B a1 | x2B a2 | . . . |xk B ak,
B → x1 a1 | x2 a2 | . . . |xk ak,

G is ambiguous if and only if there is a word wai1ai2 . . . air , w ∈ Σ?, with two different derivation
trees. And this occurs if and only if the pair A, B has a solution. (Note that two different derivation
trees for a word u exist only when u = wai1ai2 . . . air and the first rule used for the two derivations
are S → A for the first derivation tree and S → B for the second derivation tree. Hence w can be
formed from A and from B using the same sequence of indexes.)

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

5.2. Other undecidable problems [200311-0819] 51

5.2.12 Theorem. Given CF grammars G1 and G2. Denote L(G1) and L(G2) languages generated
by G1 and G2. The following problems are undecidable.

1. L(G1) ∩ L(G2) = ∅.

2. L(G1) = L(G2).

3. L(G1) ⊆ L(G2).

4. L(G1) = Σ?.

Marie Demlova: Theory of Algorithms March 11, 2020, 8:19

	Introduction
	Basic notions
	Asymptotic growth of functions
	Solving Recurrences

	Time Complexity and Correctness of Algorithms
	Time complexity of algorithms
	Correctness of Algorithms
	Minimal spanning trees
	Shortest paths
	Huffman Code

	Turing Machines
	Deterministic Turing Machines
	Turing machines with k tapes.
	Nondeterministic Turing Machines
	Random Access Machine — RAM

	Complexity Classes
	Decision Problems
	Classes P and NP
	Class NPC
	Reductions
	Heuristics and Approximation Algorithms
	Class co-NP
	Classes PSPACE and NPSPACE
	Primality Testing
	Classes based on randomization

	Undecidability
	Recursive and recursively enumerable languages
	Other undecidable problems

