3 Asymptotic growth of functions

- **3.1** Solving homework from last tutorial
 - 1) Prove or disprove: Assume that for non negative functions f(n) and g(n) we have $f(n) \in \Theta(h(n))$ and $g(n) \in \omega(h(n))$. Then

$$f(n) + g(n) \in \Theta(g(n))$$

- 2) State the asymptotic growth:
 - a) $\sum_{i=0}^{n} (7i^3 + 3i^2 + 16).$ b) $\sum_{i=1}^{n} (5^i + i^{100}).$

3.2 Using derivation trees show that the function T(n) which is give on natural numbers by the following recurrence

$$T(n) = 3T(\frac{n}{3}) + 1, \ T(1) = 1$$

it holds $T(n) \in \mathcal{O}(n)$.

3.3 Strassen algorithm for fast multiplication of matrices. Our aim is to multiply two square matrices of order 2^k . The matrix is divided into four matrices of order 2^{k-1} and the multiplication is performed according to the following equations

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} E & F \\ G & H \end{pmatrix} = \begin{pmatrix} S_1 + S_2 - S_4 + S_6 & S_4 + S_5 \\ S_6 + S_7 & S_2 - S_3 + S_5 - S_7 \end{pmatrix}$$
(1)

kde

$$S_{1} = (B - D) \cdot (G + H) \quad S_{5} = A \cdot (F - H)$$

$$S_{2} = (A + D) \cdot (E + H) \quad S_{6} = D \cdot (G - E)$$

$$S_{3} = (A - C) \cdot (E + F) \quad S_{7} = (C + D) \cdot E$$

$$S_{4} = (A + B) \cdot H$$
(2)

Calculate time requirements for Strassen algorithm.

3.4 A function T(n) is given on natural number by the following recurrence. Find it asymptotic behaviour. Justify you answer (i.e. either state the theorem you have used, or solve directly).

- 1. $T(n) = 4T(\frac{n}{2}) + n\log_2 n, T(1) = 1.$
- 2. $T(n) = 9T(\frac{n}{3}) + n^2$, T(1) = 1.
- 3. $T(n) = 30 T(\frac{n}{25}) + n^{\frac{3}{2}} \log_2 n, T(1) = 1.$

3.5 A function T(n) is given on natural number by the following recurrence. Find it asymptotic behaviour. Justify you answer (i.e. either state the theorem you have used, or solve directly).

- 1. $T(n) = T(n-1) + n^c$, T(1) = 1, a kde $c \ge 1$ is a constant from \mathbb{R}^+ .
- 2. $T(n) = T(\sqrt{n}) + 1$, T(1) = 1. (Hint: Use substitution $T(2^m) = S(m)$.)

3.
$$T(n) = T(n-1) + 2, T(1) = 1.$$

3.6 Using the Master Theorem solve the following recurrences. If it cannot be solved by Master Theorem, justify why. State Master theorem.

- 1. $T(n) = 5 T(\frac{n}{4}) + n$
- 2. $T(n) = 2T(\frac{n}{2}) + n \log n$

Problems to be solved before next tutorial

3.7 A function T(n) is given on natural number by the following recurrence. Find it asymptotic behaviour. Justify you answer (i.e. either state the theorem you have used, or solve directly).

1.
$$T(n) = 2T(\frac{n}{3}) + 1$$
, $T(1) = 1$.

2. $T(n) = 4T(\frac{n}{3}) + n^{\frac{3}{2}}\log_2 n, T(1) = 1.$

3.8 A function T(n) is given on natural number by the following recurrence. Find it asymptotic behaviour. Justify you answer (i.e. either state the theorem you have used, or solve directly).

1. $T(n) = T(n-1) + c^n$, T(1) = 1, a kde c > 1 je konstanta z \mathbb{R}^+ .