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Preface

The Mathematics Working Group (SEFI MWG) was founded in 1982. Its main
purpose is to establish, coordinate and support the mathematical needs of future
engineers on an international basis. From the outset, one of the most important
aspects has been the exchange of ideas and experiences in teaching mathematics to
future engineers. Regular seminars have been organised to enable this to take place.

The Twelfth European Seminar of the SEFI MW G was held on June 14-16, 2004,
at the Vienna University of Technology. On Sunday evening, June 13, an informal
get-together party (including a buffet dinner) was held in the historical Festival
Hall of the university. Here the participants had the opportunity to rekindle their
friendships and meet new people.

Round table discussions were a key component of this year’s seminar. Discussions
were organised on each of the three days of the conference. There were two parallel
groups before lunch and an afternoon plenary to summarize the discussion.

Shirley Booth started the first day with a stimulating plenary lecture Learning
and Teaching for Understanding Mathematics. After this talk Leslie Mustoe and
Carl-Henrik Fant organised the round table discussion on What Are the Key Issues
in Teaching Mathematics for Understanding? In the afternoon Leslie summarized
these discussions.

Milton Fuller opened the second day with a plenary talk Mathematics in Engi-
neering Education in Australia. Two round table groups discussed Innovative Ways
in Teaching Engineering Mathematics and the Impact of the Bologna Declaration.
These discussions were lead by Marie Demlova and Daniela Velichova. Following the
afternoon summary, our host, Hans Kaiser, organised a city tour of Vienna in the
afternoon for which he acted as guide. He was an enthusiastic and informative guide
and we learned a great deal about the history, architecture and music of Vienna.
The excursion ended with an excellent dinner in Heuriger Mayer Am Pfarrplatz.

The last day of the seminar was devoted to the How Should We Assess Engineer-
ing Mathematics? The plenary talk was delivered by Duncan Lawson who reported
the results of a questionnaire prepared by the SEFI MWG Steering Committee and
raised some emerging issues related to assessment. The questionnaire was aimed
at investigating the various methods of assessment of engineering mathematics used
throughout Europe. Duncan Lawson and Carol Robinson organised the two parallel
round table discussions.

In addition to the plenary talks and round table discussions, throughout each of
the three days there were a number of contributed talks relevant to the theme of the
day. The Festival Hall was also used for the display, throughout the duration of the
conference, of a range of posters.

Thanks are due to all who contributed to a highly successful seminar, especially
to Hans Kaiser, our host, and Martina Lederhilger-Widl who was a highly efficient
and very friendly local organiser. They made the seminar a very pleasant one to
attend. I would like to thank the speakers, delegates and all who participated in our
discussions.

Marie Demlovd



Future seminars are planned at Konsberg, Norway, 2006, and Loughborough,
England, 2008. We wish the future organisers success in continuing our tradition of
friendly and stimulating seminars.

Editors: Marie Demlova
Duncan Lawson

All rights reserved. No part of this publication may be reproduced or transmitted in any form
or by any means, electronic or mechanical, including photocopying, recording, or any information
storage and retrieval system, without permission in writting from the publisher.

(© Marie Demlova, 2004
Published by Vydavatelstvi CVUT, Prague, 2004
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Notes on Round Table Discussions
Duncan Lawson

Coventry University

Introduction

An important aspect of the 12" SEFI Mathematics Working Group in June 2004
was the three round table discussions. The delegates were divided into two groups
(different groups each time) to address a range of key topics related to the main
themes of the conference. What follows is a summary of the main ideas that delegates
put forward during these discussions.

Round Table One
Theme—What are the Key Issues in Teaching
Engineering Mathematics for Understanding?

The discussion was stimulated by posing the following questions:
e What do we want students to understand?
e What do we want students to do with their understanding?
e What is the purpose of teaching?
e What are the goals for the lecturers and the students?

It was agreed that there are a range of different things we want students to un-
derstand including concepts, techniques, strategies and processes. A key element is
that students must be able to understand the language of mathematics and how to
use it as a precise means of communication. We want them to be able to use their
understanding by applying it in appropriate situations, using it to develop material
(primarily in other aspects of engineering) and, in an ideal world, to enable them
to pursue an interest in a mathematical approach to engineering. In one sense, the
main way we want students to be able to utilise their understanding is to be able,
in the future as practising engineers, to cope with unpredictable situations.

We must recognise that there are different levels of understanding and acknowl-
edge that understanding is something that matures over time. A student might have
a satisfactory understanding of a concept now, enabling him/her to apply it in ap-
propriate situations. But in a few years time this understanding might have matured
to a deeper level, enabling the student to use that concept in a new situation.

The primary purpose of teaching is to facilitate learning. In order to do this we
need to know what students do and do not already understand. The vast majority
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of undergraduate groups these days have a diverse prior experience of mathematics.
This includes a range of misconceptions which must be addressed or they will prevent
future understanding. Good teaching identifies the misconceptions and aims to
replace them with sound understanding.

We must acknowledge that students’ goals will often differ from those of the
lecturer. The lecturer may take a higher, longer-term view with the goal being to
develop a level of understanding which will serve the student well in the future when
they are practising engineers. Often the students’ goals are much more short-term
and related to passing the current unit of study. Assessment is frequently the main
driver of student activity. There was widespread agreement that there is a growing
lack of motivation amongst students, particularly of learning subjects which do not
appear directly relevant (such as mathematics). This lack of motivation almost
guarantees a surface approach to learning. This may be countered to some extent
by integration of mathematics with other engineering topics thereby showing its
relevance and the use of project work allowing the students to wrestle with realistic
problems in which they need to call upon mathematical skills in order to achieve the
project aims.

Round Table Two

Theme—Innovative Ways of Teaching Engineering
Mathematics and the Impact of the Bologna
Declaration

The discussion on was stimulated by posing the following questions:
e Is the approach needed in large institutions different from that in small ones?
e What are the best (or just good) ways of using computers in teaching?
e Should we continue to use traditional ways of teaching?

It was agreed that the first semester is a crucial time for securing student engagement.
However, it was common, even in smaller institutions, for students to be taught in
large lecture groups. Typically group sizes reduce as the student progresses through
their course and there is greater specialisation. However, the use of large groups
in the early stages of the course can be counter-productive. Large groups create
anonymity and give students a feeling that they will not be missed if they do not
attend (and in truth often they are not). Missing lectures is the start of a vicious
circle. Students are then reluctant to attend tutorials because they have fallen behind
and are embarrassed to show this. Smaller groups throughout can address this but
these are not economic. One engineering department at Loughborough University
is reported to be trialling the use of swipe cards to record attendance. However,
attendance monitoring on its own is of little use—there has to be a structure in
place to follow up and counsel those students who are attending infrequently.
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The delegates agreed that advances in IT have created many new possibilities
in teaching. However there was also agreement that using IT was often seen as a
way of reducing costs but that this is not the case. The costs of developing good
quality materials are high and whilst there may be fewer traditional staff activities,
new ones are required to support the process of learning using computers. There
is a need for more extensive research into the effect of IT and e-learning in Higher
Education. It is essential that we avoid the mistakes that were made in schools with
the introduction of calculators.

Two final points in this discussion were that it is good practice to use a wide range
of methods when teaching for understanding and sharing of experience, particularly
in the use of computers and e-learning, is very important.

The discussion on the Bologna Declaration simply asked delegates to relate either
their institution’s or their country’s approach to its implementation. A wide range
of different positions emerged. It seems as though the countries which have only
recently joined the EU have adopted the Bologna principles much more quickly than
others. Although in some of the older EU countries individual institutions (such as
Chalmers in Sweden) have taken the decision to implement Bologna unilaterally.
Where there has been significant change a common effect has been a reduction in
the amount of mathematics in engineering courses.

Round Table Three
Theme—How should we Assess Engineering
Mathematics?

The discussion was stimulated by posing the following questions:

e Since written examinations bear no resemblance to practising as an engineer,
are they an appropriate form of assessment?

e Are oral examinations worth the high staff resource they require?
e Why are take away assignments not used more often?

e How appropriate is the use of learning outcomes and assessment criteria in
engineering mathematics?

In both groups there was strong support for written examinations as an important
component of the assessment regime. It was observed that written examinations have
a number of advantages such as security and having a smaller staff time requirement.
Written examinations are particularly useful for assessment at the first two levels
of learning described in Booth’s plenary lecture (i.e. knowledge and carrying out
routine calculations). It was also felt that it was possible to assess understanding
using appropriate questions, although this was thought to become harder as students
progress through a course. Decreasing the number of examinations in the later years
of a course was thought to be a good idea—open-ended tasks and project work are
better forms of assessment later in the course. The fact that an examination bears
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no resemblance to anything in the working life of an engineer was not seen to be a
problem as engineering studies is not like working life.

It was recognised that written examinations can have disadvantages. For exam-
ple, if examinations are at the end of a semester with just a short revision prior
to the examination, then this is a recipe for promoting surface learning. Regular
formative examinations throughout the semester with an end of semester summa-
tive examination was thought to be a better approach. It was agreed that time
constrained written examinations were not good for exploring the students’ ability
to ‘have new thoughts’.

There was a difference of opinion about the value of oral examinations; this
correlated to the home country of the speaker. Some felt that oral examinations are
the best form of assessment, giving the examiner the opportunity to fully explore the
student’s understanding. However others pointed out that oral examinations take
a great deal of staff time, there can be problems of consistency between examiners
and there is no opportunity for post-verification. These factors militate against the
use of oral examinations with large first year groups. However, it was agreed that
there could be a place, later in the course when there are smaller groups because
of specialising, for oral examinations to attempt to assess higher level cognitive
outcomes.

The value of take away assignments was recognised as giving the opportunity to
present students with larger, more open-ended problems and also the opportunity
for them to work in groups. However, reservations were expressed about the lack of
security and not knowing whether students had copied from each other. A number
of ways to address this were suggested. These included giving take away assignments
a low weighting in the overall assessment package, making take away assignments
a qualifier for the final examination but not a contributor to the final mark and
setting different projects to different student groups. It was noted that the last
option increased the amount of staff effort required.

There was a feeling that Learning Outcomes are often an administrative device
that does not reflect actual practice. In the overwhelming majority of assessment
regimes, we do not actually require students to ‘pass’ every outcome but give a
module/unit pass on a mark of 40% overall (where there is a choice of questions
students may avoid certain topics and even where there is no choice the aggregating
of marks across the paper means we cannot guarantee a certain standard in each
area). It was noted that this does mean that students can progress with large gaps
in their knowledge. It was agreed that it was important that students were informed
of ‘the rules’ (i.e. what is needed in order to pass) at the start, but it was felt that
meaningful generic assessment criteria were very difficult to produce because of the
marks aggregation discussed earlier. It was suggested that showing students marked
sample solutions gave them an indication of how the marks would be allocated and
therefore showed them what was needed to pass.

10
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Learning and Teaching for Understanding

Mathematics

Shirley Booth

Department of Education and “Lirande Lund”
Lund University
Sweden

e-mail: Shirley.Booth@pedagog.lu.se

This paper is an attempt to analyse and cast light on learning and teaching math-
ematics for understanding. It draws on empirical research and theoretical develop-
ments from the field of pedagogy, based on studies of learning and teaching mathe-
matics in an engineering context (Booth, 1993; Booth, 1994; Marton & Booth, 1997;
Bowden & Marton, 1998).

The empirical research focuses on learning considered through the students’ ex-
perience of learning, teaching as supporting learning, and understanding as laying
the grounds for an unknown future. There are two major theoretical developments
concerned. On the one hand, there is learning and the pedagogy of awareness (Mar-
ton & Booth, 1997; Booth, in press), which relates the student’s comprehension of
features of problems and situations they are faced with to the experience of the ped-
agogical situation in which they meet them. On the other hand, there is curriculum
development for capabilities, a term coined for the sorts of understanding which lay
the grounds for coping with future unknown problems and situations.

Learning and knowledge

First, it is important to consider what we understand by knowledge in order to
understand what me mean by learning and teaching for understanding. There are a
number of ways of characterising knowledge, mainly thanks to two thousand years
of philosophical debate on the theme. The two dominant schools of thought can
be coarsely described as rationalist and empiricist, the former locating knowledge
primarily in the brain or head, with rational thought processes as the means of
producing knowledge, and the latter seeing objects in the world as the prime source
of knowledge, which humans can never fully comprehend but can come to terms
with through experience of the world.

The rationalist school of thought can be seen in today’s cognitivist programme
of psychology research where the computer is a metaphor for human cognition, and

12
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algorithms and data structures are used to describe learning and memory (e.g. Nor-
man, 1982). The context for learning, in the purest form, is ignored as irrelevant, at
least to the models produced. The empiricist school is recognised in the behaviourist
movement which was dominant in education in the middle of the 20th century and
which led to the many attempts to make teaching more effective through “pro-
grammed learning”. That was based on the notion that knowledge could be broken
down to a logical sequence of component parts and students who demonstrated that
they had mastered one part could go on to the next, mastery consisting of being able
to respond correctly to relevant questions (e.g. Skinner, 1968). The mind is ignored
as irrelevant, or at best unknowable to the teacher, and only the correct behavioural
response to a given stimulus is of interest.

This paper is based in neither of those traditions, but one which can be called
phenomenographic, where knowledge is characterised as being a relation between
the person and object or phenomenon (Marton & Booth, 1997). Focus shifts from
either mind or object to the relation between mind and object. We no longer focus
on what happens in the brain but what the individual is doing, with respect to the
object of knowledge, and even with respect to the pedagogical context in which she
is situated and the socio-cognitive and collaborative context of fellow learners and
teachers. Learning is seen as the individual coming to new ways of conceptualising,
comprehending, seeing or understanding the phenomenon under study; coming to
see new features and relate them to one another and to the whole, as well as to the
wider world. This is essentially experiential in as much as coming to experience the
phenomenon in a qualitatively new way is seen as the ultimate form of learning, and
achieving the ways of understanding that are intended in a programme of education
is seen as the goal of teaching.

The empirical educational research tradition of phenomenography, which informs
this paper, is grounded in this view of knowledge. One of its most important precepts
is that there is variation in the ways people experience phenomena they meet in
their worlds, and that this variation can be analysed and described in terms of a
small number of qualitatively different categories. Among these categories, teachers
can identify the features that are important for current understanding possibly not
as comprehensive as the teacher’s own understanding but adequately powerful for
current concerns. And by being able to locate this form of understanding in the
context of the categories the teacher is also able to identify ways of going further
to more sophisticated understanding and to ensure that current understanding also
contains the germs of even more powerful ways of understanding for future needs.

In summary, what [ mean by learning for the rest of this paper can be summarised
as coming to experience something in a qualitatively new and more powerful way,
so that it can be accomplished in different circumstances, in different ways, and
facilitate doing altogether new things. My choice of words here will become apparent
later in the paper. But it cannot be denied that this is a good goal for higher
education, irrespective of the field of knowledge we are considering.

13
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Learning
what how
indirect act
) object
direct
object

Figure 1. A model of the experience of learning analysed as con-
tent (what or direct object), approach (how), in its turn
analysed into act and driving force (indirect object).

Two models will be used in this paper to analyse and describe the experience
of learning and teaching. The first relates the “what” the “how” and the “why” of
individual learning (Figure 1). “What” is learned is what the teacher is generally
most interested in, and it is here that the mathematics returns to our picture. The
mathematics teacher has goals for the students, generally expressed in terms of
principles, concepts, constructs and skills that together go to make up the content
of a course or module of study. This is the domain of the mathematics teacher
rather than the educational researcher, though there is much to inform the teacher
when it comes to the ways in which their students might be comprehending it all,
in particular when it comes to “threshold concepts and troublesome knowledge”
(Mayer & Land, 2003).

The “How” of learning relates to the ways in which students go about their tasks
of learning, as they are set by teachers: problems, exercises, computer modelling
or whatever, whether individual tasks or group tasks. And the “Why” of learning
here means the driving force behind their ways of tackling these tasks, derived from
their history of study, their understanding of the current situation, and its perceived
structure of relevance.

Two studies of how students experience their own approaches to learning math-
ematics and one important factor in what drives them to do what they do will now
be described.

Variation in approaches to learning mathematics

A study was carried out some years ago at Chalmers University of Technology
(Booth, 1994; Booth, 1993), in part to see if first-year students who had gone through
a particular form of teaching (explorative mathematics) with the aim of achieving
“mathematical power” differed in their views of mathematics and learning it from
those who had gone through a more traditional form of education. Representatives
of the two groups were interviewed at length, asked to tackle problems and explain

14
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them, and given the opportunity to describe how they went about their studies and
why. Their responses to such openings as “Tell me, how do you go about revising
for examinations?”, and “What do you do when you get stuck on something you
need to understand?”, as well as more straightforward questions such as “What do
you mean by mathematics, and learning mathematics?”, were analysed, resulting in
two phenomenographic sets of descriptive categories.

The first (Table 1) tells of qualitatively different ways of approaching learning
and learning tasks the “how” of our model. The results have been categorised in
terms of an overriding strategy for learning, each with an intention and a goal for
learning. The first, “Just learning” carries with it the intention of learning the
content, as intended by the teacher, so that it is known for future use as needed. It
is unquestioned, unrefined and unrelated to anything other than the current course
of study with its demands and tasks—largely aimed at the looming examination. A
slightly more refined form of this is the second category, “Doing examples”, where
the intention is to become proficient at doing examples so that examples of a similar
type can be done when needed. Quotes that partially illustrate these two categories
follow.

Table 1. The variation of ways of approaching learning

Strategy Intention Goal
Just . To learn the content To know the content for use
learning when needed

(a) To be able to concretise,

i T derstand th tent
generalise and understand | O L cooran e conten

Doing the th and be able to make use of it
examples ¢ theory . To know the content and be
(b) To become proficient at ble t it
doing the examples able touset
Let areas of difficulty rest
Unstudied and mature, then go back to | To understand the cqntent
reflection them and be able to take it for
Discuss  difficulties  with | granted in later use
friends

To be able to take different TO be able to use mathemat-
Studied perspectives on problems ics to solve problems

reflection | To relate content to the world | 10 understand how mathe-
matics applies to other situ-

ations

outside mathematics

I Learning mathematics, what is it actually, to learn mathematics?

X1 For me, well, it’s drumming it in, the methods. I really have to sit down and
do examples. I have to do masses of examples of the same type, ... so that it
really sticks. I might sit with the book, maybe sit and look back for an example
where it did the same thing... then I can do it as well...If you're going to
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remember it, you need. .. yes, a lot of examples of the same type. That’s true
all the way. Then it’s a question of learning by heart, parrot-fashion... proofs
and things [...] things like that... they usually go in and stick but then they
run away when they’re not needed any more... they don’t stick

and
I To learn mathematics, what does that mean actually?

V1 By trying to understand, first understand the theory, first and foremost, and
then going on to work out examples on the theory.

I If you meet something new, how do you usually try to get it clear?

V1 Well, T try to look at it all, go to the lectures and then look at the notes on
the lecture. And later I look in the book it’s usually a bit harder there. And
then I do some examples.

Both of these contain expressions of both categories (I want to emphasise that this
research does not categorise individual participants but only the ways in which
phenomena are voiced, which might well be in more than one way by one individual
participant).

X1 wants it to “really stick”, to avoid it “running away” by employing “parrot-
fashion” learning techniques. This is an important feature of what I mean by “just
learning”. X1 also “drums in the methods” by doing examples, and works to re-
member by “doing a lot of examples”, which also typifies what I mean by “Doing
examples (for proficiency)”. V1, similarly, “works out examples on the theory” and
“does some examples” to consolidate what has been heard and read, again refer-
ring to examples as a means of becoming proficient in doing examples. But V1’s
statement also bears the germ another intention and goal with “Doing examples”,
namely, in order to understand content and be able to use it. Maybe, although he
does not say so, he is doing examples in order to understand the theory, and in order
to cast light on what he has heard and read, and that is qualitatively different use
of examples for learning. I will return to this category shortly. The remaining two
categories both have an element of reflection: the first unstudied or spontaneous,
and the second studied, or strategic. When V8 tells:

V8 I read in the book a little and if I can’t cope, then I take it with me and ask
at an exercise class. That’s the most common way of coping with it. Or I ask
a friend, “Have you worked this example out?” Then you can go through it
together. [...] T usually try to avoid going into it too much; I don’t sit with it
for hours, but I come back to it another day. Maybe I’ll ask somebody about
it. But then I go back to it again, and then I might have had time to think it
out, and when I come back to it it isn’t at all so hard as it was at first

he is telling of a common experience of talking about problems, trying to get help,
letting things rest and take their time to sink in. On the other hand, when V2 says:
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V2 To learn mathematics, it must be mostly about understanding the question,
so that you can, you know a bit of maths intuitively so it’s a matter of under-
standing the question and using the maths you know, you bring it to a level
you can handle. It might not work every time, but then you can generalise the
problem and make it easier

he seems to have raised reflection—on the problem, on the ways of tackling it and
on mathematics learning—to another level where it is seen as a support for general-
isation. He continues:

V2 If you are going to learn something quickly you say to yourself “that’s what
it says in the book”, you don’t link it to your own experience, to reality. [...]
You should see the things as they really are and stop thinking of it as a mass
of printed text.

Expressing a strategy of looking beyond the given problem, the text, to the meaning
of the mathematics and its relation to experience, to reality.

If we return to the second strategy, “doing examples”’, we can see there a wa-
tershed between the two sets of intentions and goals, which actually divides the set
of categories into two parts. Doing examples in order to become proficient at that
sort of example points to satisfying the demands of the task or course, as does “just
learning”. Doing examples in order to understand the theory and principles, on the
other hand, points to going beyond the demands of the teacher, towards striving to
understand mathematics, as do the categories unstudied and studied reflection.

This is an example of a more general result, that there are two distinctly different
ways of going about learning tasks: a surface approach which focuses on the “sign”
of the task and a deep approach which seeks the “signified”. Every sort of task and
each subject area needs to find its own description of deep and surface approaches,
but here we have one for the overriding approach to learning mathematics in the first
year of an engineering context. I want to say again, that this is not a characteristic
of individual learners and, as we will see in more detail in due course, is closely
related to how they find the situation they are learning in. A single student can
adopt a surface approach in one course and deep approach in another, or a surface
approach to one task in a course and a deep approach to another.

What drives learners to do what they do?

The “why” of learning asks the question, what can we say about why students
act as they do? What drives them to one approach or another in a particular
situation? This is, of course, a very complex question and deserves a thorough and
varied answer. But here we can consider one factor in what drives students to do
what they do do when learning mathematics, and that is what they think studying
mathematics is all about. A belief about the subject’s nature and its role in the
world at large, whether consciously or unconsciously held, obviously drives people
to act in different ways.

In the study already mentioned, students were asked in interviews such questions
as, “What do you think mathematics is all about, actually?”, and “What role does
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maths play in your studies”, and “Where do you think maths will come into your
profession, eventually?” On the basis of discussions that followed these and other
openings, three qualitatively different ways of understanding mathematics emerged
(Table 2).

Table 2. Three categories of description of the experience of mathematics

Mathematics as a subject of study sees mathematics as a part of
the degree programme, to be studied via various teaching and learning
techniques

Mathematics as the basis of other subjects, both for study and
in the world at large, sees mathematics as something existing in its
own right, something to be tackled (learned or understood) for future
appropriate use

Mathematics as a tool for analysing problems that occur in the
world at large and hence solving them, sees mathematics as something
which co-exists with other areas of knowledge and supports the study
and development of that knowledge

A student who says the following:
I What is mathematics, do you think, generally speaking?

X2 Numbers, plus and minus, that sort of thing. I don’t really know what you
mean by, “what is mathematics?” Well, mathematics is a subject for me,
actually, I've always seen it as a subject, something to use in other subjects

points to both the first two categories: mathematics is a subject of study and at
the same time a support for other subjects of study but it has no specific role to
play in analysing problems or worldly phenomena. The next quote points more
emphatically to the second category:

I What is mathematics, do you think, speaking generally?

X3 A lot of stuff you have to know by heart [...] It’s a tool for other sciences you
might say

I Do you think you need to know it by heart?

X3 Yes, I now realise that you need to know mathematics for everything else. Now
we are starting with mechanics, and it’s all mathematics, but applied

A third quote, in contrast, relates mathematics and learning it to a future of problem
solving rather than manipulating numbers and formulae:

I What do you see mathematics as?... How would you describe mathematics?
V7 Mmm. .. the ability to solve problems and... well... to meet problems and

analyse them... you can reason about things in general terms with the help
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of mathematics. [...] I suppose it’s computers that do most of the work
nowadays, but as I said,... mathematics isn’t... it isn’t about that... it’s
about solving problems, that’s the training you get [...] it’s the thinking, the
analysing, the reasoning. ..

These three quotes give a flavour of the variation which can be found in the ways
a first-year class of engineering students conceive of mathematics and its place in
their studies and working lives. Much more could be said on this, but let it suffice
to say there is a variation which inevitably leads to a variation in ways students go
about their studies.

Returning to our relational view of knowledge, it can be seen that these three
categories describe relations: the relation between the learner and mathematics, the
relation between the learner and her or his studies, and the relation between the
learner and the secondary relation between mathematics and the phenomena in the
world mathematics has the power to describe and handle.

There is a dimension of isolation: from mathematics as an isolated subject to
mathematics as integrated into the programme of study and into the world it de-
scribes.

There is another dimension that is underpinned by another study which will
not be described fully here but which from a different starting point reaches one
set of conclusions that are rather similar (Booth & Ingerman, 2003). Students
who predominantly see mathematics as a subject of study locate responsibility for
learning with the teachers: the teachers know what the students need to know and
they deliberately pose problems that need to be tackled by the student who will then
be able to follow the track laid out by the teacher. Students, on the other hand, who
have an insight and a belief that mathematics is a tool for analysing problems that
occur n the world at large have also taken responsibility for learning mathematics
and become autonomous as learners. This can be seen as an ethical dimension of
learning (Perry, 1970), and relates to a degree of maturity as a learner and as a
knower.

There is a paradox here: no-one can deny that authority lies in the end with
the teacher, who does indeed know what he or she wants the students to learn, and
that students are in many ways subject to this authority. But on the other hand,
students have to find their own ways through the maze of knowledge they meet and
make their own sense of it in an autonomous fashion. Autonomy within clear goals
and guidelines is what is needed for the student to move in the right direction while
retaining the right to direct themselves.

Teaching for understanding: A model for creating
learning environments

So far I have written of a variation in ways in which students tackle their learning of
mathematics and what might lie behind and drive that. I have pointed to a qualita-

tive difference in ways students tackle learning tasks, surface approaches focusing on
trying to satisfy the demands of the task in the way the teacher appears to want it,
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and deep approaches using the learning task to tackle the mathematical principles,
concepts and relationships that form the content of a course.

Surface approach
Students : et g
back d focusing on the “sign
acksroun focusing on the demands of the course
etc .
content to reproduce course material
Deep approach Qualitative
focusing on the “signified” or the meaning [ difference in
relating wholes and parts what the
relating to own wider experience student
\ learns
A\
Perceptions Approach to Outcome
of learning learning of
environment tasks learning
Teacher’s
curriculum
design, etc
Clear goals

Engaged teachers
Reasonable workload
Appropriate testing
Degree of choice

Figure 2. A model of the relationships between the perceived
learning environment, variation in approaches and qual-
ity of the learning outcome. After Biggs (1989) and
Ramsden (1992)

When it comes to learning for understanding, the deep approach is clearly su-
perior! Then our question becomes, how can the teacher support deep approaches
among their students? Another model can help us tackle that question, a model
derived on the one hand from qualitative phenomenographic research of the kind
already related here, and large scale longitudinal quantitative studies that were car-
ried out largely in the UK (Ramsden & Entwistle, 1981). The model (Figure 2) owes
its origins to the work of Biggs and goes under the name of the 3-P model, the three
Ps standing for presage—what comes before the learning situation—process—what
happens in the learning situation—and product—the outcome of learning (Biggs,
1989).
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The three central boxes in the model relate the outcome of learning to the ap-
proach to learning tasks n the way already described here, and the approaches to
learning tasks to the ways in which students perceive the learning environment. It
is the perception of the learning environment that drives the students to either a
surface or a deep approach to the task in hand, which has been as said several times
not to be a characteristic of the student but rather a response to the immediate
situation.

The work of Ramsden and Entwistle identified five specific characteristics of the
learning environment that affected this response. Perceiving clear goals, teachers
with an interest in the students and their studies, a workload that was reasonable,
that assessment practices were in accord with the form and content of the course,
and a degree of freedom of choice are all associated with students adopting a deep
approach to the immediate learning task. Just turn those factors round and you
will see at once that the reverse is also true. Unclear goals set by teachers without
apparent interest in their students but at the same time loading them with work
and ignoring the form of the assessment, all in a tightly controlled course would lead
the best student to a surface—let’s get this over with—approach!

The links from the boxes on the far left are also results of the large-scale study:
The student’s history of studying, the presage, is found to affect all three of the fac-
tors while the teacher’s work on curriculum and content only affects the perceptions
of the learning environment. This means that the teacher’s only hope for encour-
aging students to aim to understand their mathematics is to work on the learning
environment. The content to be taught and the ways of teaching are of secondary
importance, and have to take their cues from other considerations.

The paradox of autonomy is clearly related to the expression of clear goals,
strengthened in the forms and content of assessment, around which the students
have a large degree of freedom. Integration of mathematics into the programme of
study and the world at large is less an issue of couching problems in the language and
concerns of the engineering specialisation and more an issue of situating the environ-
ment for learning in the engineering specialisation and in the world. That is not to
say that mathematics should be taught by the engineers—perish the thought!—but
that mathematicians and engineers could unite some of their courses so that the
students experienced a team of teachers leading their learning of mathematics in
the world of engineering they intend to enter. Imagine a course of structural me-
chanics for future civil engineers in which tutorials were given by mathematicians,
dealing specifically with the mathematics met in the course; or a course of field the-
ory for electrical engineers which brought complex analysis up as a subject of study,
to be taught by mathematicians in an integrated manner. And imagine access to
short mathematics revision workshops with content on the web, designed and run
by mathematicians, which students could refer to when they felt the need, or when
advised to by teachers of engineering specialisations within, possibly, the context of
large group projects.
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Designing curriculum for understanding

While the mathematics that is to be taught is very much the domain of the mathe-
maticians, in collaboration with the engineering programme co-ordinators, the gen-
eral principles of curriculum design can be considered in the light of the work pre-
sented hitherto.

We want students to understand mathematics, but what does that mean?

Depending on what philosophical standpoint one sees knowledge and learning
from, understanding can have different meanings. In our relational epistemology we
need to see what people at large mean by understanding, because it is that meaning
that drives them. A study of children’s and adults’ meaning of understanding can be
presented briefly, and give us a lead in our final piece in the puzzle of learning and
teaching for understanding mathematics. This study results in four qualitatively
different ways of understanding understanding;:

To understand something is (a) to be able to do the same thing again, (b) to be
able to do the same thing again in different circumstances, (c) to be able to do the
same thing again in different ways and (d) to be able to do entirely different things.
This explains my wording when I defined what I meant by learning: “coming to
experience something in a qualitatively new and more powerful way, so that it can
be accomplished in different circumstances, in different ways, and facilitate doing
altogether new things”.

If we relate this to understanding that the derivative of sinx is cosx, then the
four stages of understanding, in this relatively trivial example, might be: (a) always
being able to substitute d/dz(sinx) by cosz, (b) be able to integrate cosz, (c) be
able to relate the slope of the tangent of the sine curve to the ordinate of the cosine
curve, and (d) be able to work more generally with differential equations involving
trig functions. Of course, in more complex examples of understanding mathematics
these stages are also more complex. It can be a nice exercise for students to take a
mathematical fact and consider these four stages that mean understanding!

Our interest, and duty, is, as students can also point out, to offer them the
opportunity to understand mathematics so that they can solve the problems they
meet in their studies and in the real world, in an environment of clearly guided
autonomy. The most important thing is to provide them with a base for coping with
future situations that are entirely unfamiliar to them.

The educational researcher and developer John Bowden has used the term “ca-
pabilities” to describe this sort of understanding, and together with Ference Marton
he has developed a theory of curriculum development that aims to develop capabil-
ities in the students: the ability to cope with unforeseen issues grounded in what
was learned and understood at university. This is the basis for life-long learning, in
strong contrast to seeing life-long learning as an endless succession of courses to keep
up to date. Naturally, courses will still be reasonable way to learn what is needed,
but the development of capabilities implies that one has already determined what is
needed, a result of a developed autonomous relationship with the field of work and
learning.

As Bowden puts it: “University students are always learning through interaction
with current knowledge so as to become capable, some years in the future, of dealing
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with situations in professional, personal or social contexts that can’t be specified in
advance. In essence, we claim that university students are engaged in learning for an
unknown future and that we have to design the curriculum with that in mind, Hence
the notion of capabilities as learning goals emerges as a central idea capabilities to
act in previously unseen situations.” (Bowden, in press).

He lays down 6 principles for establishing and implementing a curriculum for
capabilities:

1 What should the learner be capable of doing at the end?

2 What kinds of learning experiences and in what combination would best assist
the learner to achieve those outcomes?

3 How can the learning environment be best arranged to provide access to those
optimal learning experiences?

4 How can the differing needs of individual students be catered for?

5 What specifically is the role of teachers in supporting such learning by stu-
dents?

6 What kinds of assessment of student learning will motivate learning of the kind
desired and authentically measure the levels of achievement of the intended
learning outcomes?

The first and sixth of these principles form a framework for the work of teachers and
teams of teachers—mathematicians and engineering specialists—who are working on
developing an environment for learning for understanding. The goals of the course
and the assessment must be considered together in order to form the guidance for
an emerging student autonomy. Then can come the second and third into play:
designing experiences—processes—within the constraints of the guidelines which
can lead to the learning outcomes—products—that are implied by the goals.

When considering the fourth principle—that the differing needs of the individ-
ual student should be catered for, both the students’ background—presage—has
to be thought of, and the variation of ways in which students understand the role
of mathematics in the programme of studies and the world—as described earlier.
Of course, there are many more individual differences in a class of students, but
these—together with a respect for their differences—that are of vital importance. If
environments can be designed and implemented that take account of these specific
differences, then the approaches adopted will tend to the deep approaches that are
desirable for understanding.

The fifth principle now, finally, relates to teachers and how they can support
the learning. Here I would like to suggest that teachers can best understand and
support their students learning by actively engaging in research and development
projects related to the practices of learning and teaching mathematics, but that is a
whole other story. At least, teachers must take into account the research results on
learning and understanding mathematics in all aspects of planning and practising
their teaching.
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There no immediate answers on how to go about such changes to teaching for
understanding, but I can summarise with a few points to draw from this paper.

Large parts of programmes must be redesigned in order to effectuate the sort
of programme outlined, in collaboration between the various stakeholders—teachers
of other subjects, students and ex-students—and, I suggest, educational researchers
and developers. The educationalists cannot, probably, advise or provide answers on
the mathematics curriculum and teaching strategies, but they can in all certainty
put important questions that teachers have to answer, and they can support with
the research results and approaches that are necessary to move curriculum change
forwards.

The goals and its constituent parts must be articulated, which facilitate students’
autonomous goal-making and support collegiality at all levels, for developing capa-
bilities for the future which go beyond mathematics in the curriculum, and towards
mathematics in the experienced world of engineering.
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Abstract

“In past years there has not been a direct relationship between the mathematics
courses provided for the engineering degree programs and other (engineering)
courses taught where the mathematics content could be used.” This state-
ment was made by a project engineer responding to a survey of graduates of
engineering programs seeking input on the impact of current mathematics ed-
ucation on their professional careers. The graduate then refers to the missed
opportunity by teaching staff of linking together two second year subjects, one
mathematics and one on mechanical systems. Joint teaching projects, relating
mathematics to its application in engineering, is one area engineering math-
ematics educators are exploring to improve motivation to learn mathematics
by engineering students. In Australia, there is a move by engineering schools
to embrace problem based learning (PBL). What challenges does this create
for mathematics staff? What are the implications for content, presentation,
assessment and team work in mathematics courses in engineering education?
Engineering undergraduate education is undergoing rapid change in Australia
(and elsewhere). In fact there does appear to be a “revolution” taking place
in engineering education. It is essential that the working relationship between
mathematics departments and engineers take on a new dimension if engineering
mathematics is to make a positive contribution to the revolution in engineering
education or it can become the domain of engineering schools!

This paper will outline some of the challenges to be addressed and the working
relationships that are taking place between mathematics staff and engineering
staff to meet the challenges generated by the “revolution”.

The challenges faced by engineering mathematics educators in Australia could
well be applicable to our colleagues in Europe.

Introduction

In an Editorial for the Newsletter of the European Mathematical Society (EMS) [1]
David Salinger referred to the Statutes of the EMS, in particular that one which
states; “establish a sense of identity amongst European mathematicians”. Salinger
argues that mathematics is international and that creating a European identity can
be divisive.
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From my experience mathematics in engineering education is the concern of
a global village. This meeting is the result of long term cooperative interaction
between Australian and European colleagues, who in many instances, face the same
challenges. In fact, personally, I have gained much from my European colleagues
over a period spanning 30 years. In February 2002 the Faculty of Engineering and
Physical Systems at Central Queensland University commissioned a project to review
the mathematics content of the undergraduate engineering degree programs offered
by the Faculty. This review involved meetings with mathematicians and engineering
staff at several Australian universities. These meetings, together with a survey
of the current literature, and attendance at two Australian organised conferences
during 2003, have given the author a reasonable insight into the “state of the art”
in mathematics in engineering undergraduate education in Australia.

A review of international literature and contacts with staff in UK and Swedish
universities have also given an idea of developments in Europe.

Changes in Engineering Education—Challenges for
Mathematics

A Report on a major review of engineering education in Australia was published
in 1996 [2]. In the Foreword to the Report, the Chair of the Review Commit-
tee, Peter Johnson, stated that the Review recommends “no less than a culture
change in engineering education which must be more outward looking with the capa-
bility to produce graduates to lead the engineering profession in its involvement with
the great social, economic, environmental and cultural challenges of out time” (p6)
“Courses should promote environmental, economic and global awareness, problem
solving ability, engagement with information technology, self learning and lifelong
learning, communication, management and team-work skills, but on a sound base of
mathematics and engineering science.” (p7)

John Webster, in an overview of the Review [3] included the following reasons
for it.

e The emergence of new engineering disciplines and new technologies.
e Significant changes in the capacities of tertiary students at the point of entry.

He also insisted that there should be emphasis in undergraduate programs to
move away from the present focus on examinations, in one form or another. Un-
dergraduate courses should cover problem definition and problem solving, model
building and simulation.

In a paper delivered at the third Mathematical Education of Engineers confer-
ence, UK [4] the author discussed the question: Is there a gap between the changing
needs of engineering education and the current service offered by mathematics de-
partments? The paper also called for more dialogue between mathematicians and
engineers by forums and special interest networks. The aim being, with joint effort,
to cooperatively generate an appropriate mathematically sound but relevant and
technology enhanced mathematics education for the engineer of the future.
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At Central Queensland University (CQU), the Faculty of Engineering and Physi-
cal Systems has established an Engineering Mathematics Working Group (EMWG).
The purpose of the EMWG, which has a membership of three engineering academics
and three mathematics staff, is to generate greater awareness of the changes tak-
ing place in engineering education and the way mathematics can make a positive
contribution to a changing engineering education. Groups like this one are emerg-
ing nationally resulting in greater cooperative effort to improve the mathematics
education of engineers.

The first challenge in engineering mathematics in Australia is to generate closer,
and continuing liaison between the engineering staff and the mathematicians who
provide the mathematics course. Student contribution to this liaison is also consid-
ered vital. Comments, like this one from a recent graduate engineer emphasise this
challenge.

“In the past years there has not been a direct relationship between the mathemat-
ics courses provided for the engineering programs and other (engineering) courses
taught where the mathematics content could be used.” This statement was made
by a project engineer in response to a survey of recent graduates of engineering
where input was sought on the relevance of the mathematics courses to their current
employment. This respondent referred to what he felt was the missed opportunity
to link a mathematics course with an engineering course where the mathematics
was particularly valid. Both courses were taught in isolation to each other. At a
Forum on Mathematics in Problem Based Learning in Engineering Education [5] it
was agreed that more time in mathematics courses should be devoted to developing
understanding of concepts and less on tedious manipulation which can be efficiently
carried out by relevant technology. At the same Forum, joint teaching sessions in-
volving both mathematics and engineering staff were perceived as a means of setting
the mathematics in an engineering context and so contributing to positive learning
outcomes.

The second challenge relates to assessment and learning outcomes.

At the 2002 Australasian Association for Engineering Education (A%E?) Confer-
ence, Jackie Walkington and David Dowling presented for discussion, the paradox
of best practice in assessment and the constraints of implementation [6]. They list
the important principles that underpin assessment in undergraduate programs. In
particular, assessment should:

e Measure student learning (and student learning is continuous).
e Be aligned with course objectives.

e Recognise student diversity.

e Encourage student learning.

e Have standards which are transparent to the students.

Whist academic staff may well be aware of these features of sound assessment, Walk-
ington and Dowling outline some of the barriers to implementation of these features.
The student body is no longer homogeneous. There is a diversity of learning styles,
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backgrounds and attitudes. Their message was that catering for this diversity re-
quires change not only at the classroom level but at all levels within the engineering
education framework. The barrier to effective assessment is the difficulty/inability
to truly get to know about the diversity of the students’ backgrounds. They also
discuss the lack of resources and the attitude of some staff to the acceptance of chang-
ing assessment practices. In addressing the problem they argue that; (i) assessment
needs to be part of the initial design of a course, both formative and summative
assessment is required, and, (ii) a holistic approach is required if an understanding
that effective change seeking long-term improvement to teaching/learning within a
faculty is to be achieved.

In the restructured first year engineering mathematics courses at CQU (Engi-
neering Foundation Mathematics and Engineering Mathematics) assessment now
consists of assignments, projects and class tests with the component for formal ex-
amination reduced from 80% to 50% of the total.

There is also a trend in assessment for students to be allowed to have graphics
calculators with computer algebra systems (CAS) in formal examinations. This
trend has in itself generated a critical review of the structure of formal examinations
in assessment. Associated with the challenge of linking assessment with well defined
learning outcomes is the need for engineering mathematics to be perceived as being
an integral component of the engineering program, not an attachment, and to be set
within the context of engineering, or related applications.

The third challenge is to develop the process of mathematical modelling as a
principal learning outcome.

Whether mathematical modelling, as a skill,art or craft involving problem iden-
tification and the process of listing assumptions, defining variables and setting up
mathematical relationships, should be included in the engineering mathematics cur-
riculum for undergraduates, continues to be a topic of debate. As well there are
times when the use of existing mathematical models and the process of setting up a
model has been confusing for the student.

Mathematical modelling in high school mathematics is currently receiving a lot
of positive attention. The mathematics syllabuses in high schools in several Aus-
tralian States now include mathematical modelling as an essential component. The
Objectives of the Queensland Senior Mathematics B Syllabus (the normal mathe-
matics prerequisite for engineering undergraduate programs) include the heading,
Modelling and problem solving. Under this heading, the Syllabus states, “By con-
clusion of the course students should be able to demonstrate the category of modelling
and problem solving through

e Understanding that a mathematical model is a mathematics representation of
a situation

e Identifying the assumptions and variables of a simple mathematical model of
a situation

e Forming a mathematical model of a life-related situation

e Deriving results from consideration of the mathematical model chosen for a
particular situation
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e [Interpreting results from the mathematical model in terms of the given situation
e Exploring the strengths and limitations of a mathematical model”

However skills audits of the new intake of students into engineering programs
at CQU reveal little understanding of this definition of mathematical modelling. It is
suggested that the process of mathematical modelling (as defined in the Queensland
Syllabus) can be developed in first and second year engineering mathematics. Joint
teaching with engineering staff in third and fourth year could then see the process
strengthened as students encounter mathematical modelling within the context of
engineering problems.

Mathematical modelling at all levels of mathematics education has been the
theme for the international conferences on the Teaching of Mathematics and Appli-
cations (ITCMA). At ICTMAY the author [7] summarised the benefits to learning
provided by the inclusion of mathematical modelling in the curriculum, especially for
engineering students. “If interest and motivation are developed through relevance,
and students have the resources to experiment, explore and investigate the analytic,
graphical and numerical aspects of a problem, content will be consolidated and new
learning can take place through modelling activities” (p146).

Richard West describes mathematical modelling as a strengthening thread in
mathematics courses at the United States Military Academic, West Point [10].
He stresses that curriculum reform in mathematics should have a primary focus
of empowering students and that mathematical modelling can play a vital role
in contributing to a cultural change in mathematics education. West lists in-
terdisciplinary projects, which can support this cultural change; the Interdisci-
plinary Lively Applications Projects (ILAP’s) (Available on the COMAP website
http://www.projectintermath.org/products/listing/)

There is little doubt in the minds of many engineering educators that there
is a definite role for mathematical modelling and it should be integrated into the
curriculum.

An additional argument for modelling is that it presents a marvellous opportunity
to create an environment for learning to be embedded in reality. However to expect
students to formulate mathematical models when their competence in mathematics
may well require strengthening can often lead to frustration and loss of motivation.
It is therefore suggested that the development of the modelling process be gradual
and guided but be a definite framework for engineering mathematics. To enable
students to make progress with the process of modelling it is vital that they have a
thorough knowledge, not just a 50% pass rate, of the foundation concepts developed
in first year courses.

In the final year of an undergraduate program it is envisaged that mathematical
modelling would include team projects involving mathematics and engineering staff
sharing the presentation.

Setting the scene for mathematics to contribute to PBL in engineering education
is the fourth challenge.

The momentum for engineering education in Australia to embrace problem based
learning (PBL) has increased since Don Woods [8] first used the term in 1994. A
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special Network link on the Australasian Association for Engineering Education
(AAEE) (www.aaee.com.au/network/index.htm) refers.

A special issue of the International Journal of Engineering Education [9] was
devoted to PBL in engineering education. Questions raised in the Editorial to this
special issue include: “How much PBL is expedient for a degree course, how does
PBL fit into our established concepts of academic studies, and how does PBL effect
the performance of brighter and more average students”. The second of these ques-
tions is pertinent to the challenge of integrating mathematics into PBL in engineer-
ing education. This is a challenge for both mathematicians who teach engineering
mathematics and engineers who teach in the PBL mode. De Graaff and Kolmos [10]
discuss the curriculum structure in which the subject (course) disciplines are inte-
grated through case studies, the learning process is facilitated by the lecturer and
assessment must be compatible with the learning objectives. The emphasis is test-
ing for competence in applying the course matter rather than testing for factual
knowledge.

In this special edition there is a serious omission! No paper addresses the chal-
lenge of integrating mathematics into PBL in engineering education. However, Bowe,
et. al., of the Dublin Institute of Technology describe how PBL can be used to teach
physics to engineering students [11]. These authors warn that the students do re-
quire a sound body of mathematical skills and that facilitation of the learning is a
key feature and tutors must be aware that students are only in the early stages of
self directed learning.

Using PBL processes to teach physics is, possibly, similar to teaching engineering
disciplines by PBL. However in the case of mathematics, the main challenge is that
the students need a deep understanding of the first year concepts. If an engineering
problem requires a knowledge of eigenvalues, for example, this topic cannot be fed
into the PBL project without the student having a sound prior knowledge of ma-
trix algebra. There is no doubt that addressing the task of how mathematics can
contribute to PBL in engineering education is a major challenge.

The fifth challenge, and by no means the final one, is how mathematics staff
can make a positive contribution to the move for mathematics to be presented as
part of a integrated curriculum. As outlined, mathematical modelling, especially in
the advanced courses, and PBL in engineering education become multidiscipline in
nature.

Integrated curricula are being developed.

An example is the Principia Program at the Institute of Advanced Studies in
Technology in Mexico. This excellent example of an integrated teaching model is
described in a joint paper by the Dean of the Engineering school and the Chair
of the Mathematics Department [12]. An integrated curriculum of this type would
make a positive step to address the challenge of providing a mathematics service for
PBL engineering education. As Daniel Goleman points out in his latest book [13]
“There is a crucial difference between declarative knowledge, knowing a concept and
its technical details, and procedural knowledge, being able to put those concepts and
details into action” (p242). It is the blend of declaration and procedural knowledge
resulting from participation in engineering mathematics which can be achieved by
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cooperation and sustained effort by engineers and mathematicians which will deter-
mine the future blend of mathematics engineering and education in the education
of Australian engineers of the future.

Conclusion

In 2002 the Mathematics Working Group (MWG) of the European Society for En-
gineering Education (SEFI) presented a core mathematics curriculum for the Eu-
ropean engineer [14]. Apart from listing detailed content of topics in mathematics,
the curriculum also draws attention to the on-going challenges presented by

The diversity of mathematical ability of entrants to engineering programs.

The need for those teaching mathematics to be aware of applications of math-
ematics in engineering and changes taking place in mathematics education in

high schools.

The early introduction of mathematical modelling into the education of engi-
neers.

“Traditional” methods of assessment—do they really meet the objectives of
learning outcomes?

The role of technology in mathematics for engineers the concern of the “black
box approach” favoured by some engineers.

So the challenges are also being addressed by this Group. Looks like we all join the
revolution!
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Abstract

In this paper we describe the background to and preliminary findings of the
SEFI Mathematics Working Group (MWG) assessment project. The paper
then goes on to address some emerging issues in assessment such as the use of
constructive alignment in curriculum development and the linking of assess-
ment tasks to intended learning outcomes.

1 The SEFI MWG Assessment Project

The SEFI MWG assessment project has three main purposes:

1. To survey the methods of assessment used in engineering mathematics across
Europe;

2. To stimulate debate on appropriate and efficient methods of assessment;

3. To spread good practice in assessment.

This is an on-going project which is currently at a relatively early stage. The
findings reported here should be taken as no more than an interim report.

A questionnaire on a number of issues related to assessment in engineering math-
ematics was sent to all contacts on the SEFI MWG database (a copy of the question-
naire is given in Appendix A). Further copies of the questionnaire were distributed
at the 12th SEFI MW@ seminar in Vienna in June 2004. In addition, there was a
round-table discussion at the seminar on issues relating to assessment.

2 Findings of the Questionnaire

By the time of the SEFI MWG seminar in Vienna responses had been received from
colleagues across Europe; from eleven different countries. The full list of countries
from which responses were received is given in Appendix B. Typically only 2 or 3 re-
sponses were received from each country. Further questionnaires were completed by
delegates at the 12th SEFI MWG seminar and the questionnaire will be distributed
again at a number of national conferences in the near future.

As can be seen in Appendix A, respondents were given a list of methods of
assessment and asked to grade each method for both themselves and their institution
on a three point scale
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e Not used at all
e Used occasionally
e Used frequently

The responses indicated that there is considerable variation in practice across
Europe. Several respondents indicated that their own institution used only one or
two different methods of assessment, whilst others showed that a wide variety of
assessment methods are in use at some institutions.

Unsurprisingly, written examinations are the most widely used form of assess-
ment, with the ‘closed book’ form being much more widely used than ‘open book’.
Several respondents reported the use of examinations where the candidates had ac-
cess to computer facilities in order to help them answer the examination questions.

Oral examinations are used quite widely, particularly in central European insti-
tutions. In some institutions they are used frequently and one respondent used the
free comment section of the questionnaire to state that oral examinations are the
most important form of assessment because they give the best opportunity to test
in-depth understanding of material. Others commented that this kind of assessment
is highly staff intensive.

Take away assignments are used at several institutions, but always as one amongst
a number of methods of assessment and never as the only or primary method. From
remarks in the free comment section, it would appear that some staff have reserva-
tions about this method of assessment because it is impossible to be certain that
the student submitting the work actually did it for him/herself. However, take away
assignments were seen as giving students an opportunity to explore more realistic
problems than they can in an examination and for this reason often require the use
of computer software to complete the assessment task.

Only a few institutions use multiple choice tests—and those that do use them
do so only occasionally. Such tests can be cheap to administer as they can be com-
puter delivered and marked and so they can be useful in giving formative feedback.
However, as all that is marked is the student’s final answer, they have limitations
when being used for summative assessment.

Other methods of assessment such as project work, group work and oral presen-
tations are not widely used.

3 Constructive Alignment

Constructive alignment is an approach to curriculum design which requires explicit
integration of the intended learning outcomes, teaching methods and assessment in
order to produce efficient student learning. In Britian, the Quality Assurance Agency
has been a leading proponent of this approach [1]. This approach is frequently
implemented in a tight heirarchical structure.

The top level of the heirarchy is the programme (or course). A Programme Spec-
ification must be published which states explicitly the intended learning outcomes
of the programme. A programme will be made up of modules or units each with
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their own intended learning outcomes. The programme learning outcomes should
be demonstrably delivered by a combination of module learning outcomes.

Traditionally modules/units were described by a syllabus that would be covered.
This was often a list of topics and gave no indication of the depth of coverage of
these topics nor of what would be expected of students. So, for example, in history
the topic ‘First World War’ would appear on syllabuses from primary school to post-
graduate course. Intended learning outcomes give more detail than syllabus topics.
They specify depth and what students should be able to do at the end of the module.
Typical intended learning outcome statements begin ‘On successful completion of
this modules students will be able to’. What follows has a taxonomy of its own,
but a key point is that the verb which follows the introductory statement should be
something which can be assessed.

To a limited extent the heirarchical nature of mathematics reduces the need for
detailed intended learning outcomes, but they are nonetheless used. So, for example,
rather than a syllabus list which gives a number of topics in calculus, many modules
in engineering mathematics contain statements such as ‘On succesful completion of
this module the student should be able to apply standard techniques in algebra and
calculus to engineering problems’. There is still a need for a syllabus or topic list
to contextualise what is meant by ‘standard techniques’. The current version of
the SEFI Core Curriculum for Engineering Mathematics [2] is written in learning
outcomes form.

The next stage of the heirarchy is in terms of assessment. The intended learn-
ing outcomes of the programmes have to be assessed. However, assessment usually
takes place at module level. This is not a problem as programme learning outcomes
are delivered by a combination of module learning outcomes. It is therefore impor-
tant that module learning outcomes are assessed. In programme validation, it is
now common to expect explicit links between module assessment activities and the
intended learning outcomes.

The assessment questionnaire included questions relating to learning outcomes
and whether or not there was any explicit link between these and assessment meth-
ods. The replies replies to these questions are summarised in Table 1 below.

Use of Learning Outcomes | %
Do not use learning outcomes | 22
Use learning outcomes

but no link to assessment 28
Use learning outcomes
and link to assessment 50

Table 1: Use of Learning Outcomes

4 Conclusion

The preliminary findings of the SEFI MWG Assessment Project indicate that there
are many different approaches to assessment used in engineering mathematics across
Europe. Whilst traditional methods such as written and oral examinations are still
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most common, there is increasing use of take away assignments and assessments
which require students to use computer software.

In curriculum development, learning outcomes are now widely used throughout
Europe. Furthermore, it is becoming increasingly common to link explicitly the
learning outcomes and the assessment regime.
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Appendix A—The Questionnaire

SEFI Mathematics Working Group
Engineering Mathematics Assessment Questionnaire

Assessment of Engineering Mathematics is currently a topic of considerable inter-
est across Europe. This is one of the themes of the 12th SEFI Mathematics Working
Group Seminar to be held in Vienna in June 2004.

As part of this seminar, the Organising Committee would like to be able to
present an overview of practice in assessing Engineering Mathematics throughout
Europe. In order to be able to do this we would be grateful if you would complete
the questionnaire below.

When you have completed this questionnaire, please return it as an email attach-
ment to Prof Duncan Lawson, email d.lawson@coventry.ac.uk

General Detalils

Country: ......cooeiviiiiiiii.,

Email address: ...................

Methods of Assessment

In the questions below we ask you to give some information about the different forms
of assessment that are used by you and by your organsitation in the assessment of
Engineering Mathematics. By ‘your organisation’ we mean either your university,
your faculty or your department—whichever you are able to answer for.

Name the organisation to which the answers refer:

Number of engineering first year students entering the organisation: ..............

Do you specify ‘learning outcomes’ that students should achieve in engineering
mathematics? YES / NO *

If yes, do you explicitly link assessment tasks to learning outcomes?
YES / NO *

*(please delete as appopriate)

Please note the following definitions regarding the questions below.

Closed book exam: an exam where students cannot take any material into the exam
Open book exam: an exam where students can take materials—such as revision
notes or text books—into the exam with them.

38



Assessment in Engineering Mathematics

Please complete the table below, answering separately for yourself and for your or-

ganisation, using the following scale:

0 - not used at all
1 - used occasionally

2 - used frequently

Please leave boxes blank where there is no answer (for example, if you do not teach

engineering mathematics beyond the first year).

Assessment Method Used by you | Used by org
1st | Later 1st | Later
year | years year | years

Closed book written examination

Open book written examination

Closed book examination with computer facilities
available

Open book examination with computer facilities
available

Take away written assignments

Take away assignments requiring the use of
computer software

Oral examinations

Computer-delivered assessments

Multiple choice tests

Project Work

Group Work

Oral presentations

Other method #1

Other method #2

If you use any other methods please describe them below.

Good Practice

Please outline any assessment practice that you use, or would like to use, that you
feel is particularly innovative or represents good practice in assessing engineering

mathematics.
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Appendix B—Countries from where completed
questionnaires were received
Questionnaires were returned by colleagues in the following countries:
e Czech Republic
e Finland
e France
e Germany
e Hungary
e Latvia
e Lithuania
e Norway
e Slovenia
e Sweden

e United Kingdom
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Introduction

Applications of mathematics to engineering require the use of basic concepts in con-
texts of different degrees of generality and complexity. The teaching of a certain
topic or subject does not necessarily imply, as a result, the understanding of such a
topic or subject by the student (in the sense of understanding a mathematical con-
cept given by Sierpinska, 1992). Access to advanced mathematical concepts requires
the interaction of processes of representation, abstraction, modelling, generalization
and synthesis.

Within the complexity of these processes, visualization plays a crucial role in the
learning of mathematics, because of the interpretational power and synthetic vision
involved in this way of dealing with information. The capability of coding and
decoding different levels of visual information provides a resource to assess students’
conceptualisation.

As a result of instruction that has a strong tendency to formalism, on the one
hand, and a focus on the development of complex procedures, on the other, previ-
ous studies have revealed that our students visual reasoning (Cavallaro & Anaya,
2003). This fact may place low value on contribute to keeping hidden the underlying
mathematical ideas.

In the case of the definite integral, in order to pass the final exam, our students
must be able to solve problems like:

A. A function f is such that e/(®) f’(z) — 2 = 0. The graph of f contains the
point (0,0). Calculate the area bounded by the graph of f and the lines y = 0,
r=—-2,c=2.

B. If f: R — R is differentiable and has a minimum at z = 0, find the Taylor
polynomial of 2°¢ degree at o = 1 associated to the function

F(as)/om At dt.
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However, being able to develop the necessary procedures to solve these sorts
of problems does not imply an adequate comprehension and conceptualisation of
the definite integral concept. Sometimes, students apply procedures without under-
standing what they are doing: for instance, in their own words, they explain that “to
differentiate this integral, we have to write the function that is inside, but evaluated
at the upper limit of the integral, and multiply it by the derivative of the limit. I am
not sure why. I think that there is a theorem that states it”.

In this study, we have investigated what are the conceptions that students have
about integral, area and integral function after they have passed the course. The
ability to code and decode visual representations allowed us to analyse these con-
ceptions in connection with procedural and conceptual knowledge and to detect
misconceptions that were not revealed by standard evaluations.

Insufficient treatment of graphical-visual tasks together with a weak valuation of
visual reasoning could be one of the sources of students’ difficulties in the conceptu-
alisation of a definite integral.

Theoretical considerations

Visualization in mathematics is not a mere immediate vision of relationships among
mathematical concepts, it is an interpretation, a real work of coding and decoding
information. It is closely related to a process of communication of ideas and is deeply
rooted in the long history of the mathematical activity (Guzmén, 1996).

Visual intuition in mathematics has led to ideas that have resulted in great
advances in the development of mathematics. However, a person will be able to
take advantage efficiently and effectively of visualization as a resource only if (s)he
learns how to understand adequately the meaning of what is communicated. The
more complex the codification of ideas is, the more conceptual is the mathematical
knowledge involved in the process.

Historically, researchers in mathematical education have considered the existence
of two kinds of mathematical knowledge, which have taken different forms: skill
vs. understanding; meaningful vs. mechanic. Skemp (1978) distinguished between
relational and instrumental understanding.

Hiebert and Lefevre (1986) propose a classification in conceptual and procedural
knowledge.

Conceptual knowledge: 1t is the knowledge characterized by being rich in relation-
ships among units of information. There are two levels at which these relationships
can be established:

a) Primary level: the relationship is constructed at the same level of abstractness
as that at which the information is represented (the term abstractness refers
to the degree to which the relationship is tied to specific contexts).

b) Reflective level: the relationship is constructed at a higher level of abstraction
than the information represented, transcending the level of the represented
knowledge.
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Procedural knowledge: 1t is characterized by its structure: procedures are hierar-
chically arranged so that some sub-procedures are embedded in others forming a
linear sequence of prescriptions. Procedural knowledge encompasses two kinds of
information:

a) Formal language or symbolic representation system in mathematics.
b) Rules or algorithms for solving mathematical tasks.

Students are not completely competent in mathematics if one of these, conceptual
and procedural, knowledge is deficient or if having been acquired, they remain as
separate entities.

Method

A questionnaire was presented to 72 students of the National University of Technol-
ogy, some months after they passed the final exam of the first course of Mathematical
Analysis.

The questionnaire stressed different levels of difficulty in the coding and decoding
visual information about areas, primitives, Riemann integral and integral function.

A qualitative analysis of the data was done, through the study of the justifications
and the type of resolutions students presented, considering whether it was founded
in a visual analysis.

Some of the Questions, Relevant Results and Dis-
cussion

Some questions, in which a rather low level of visualization was required, were aimed
a studying the discrimination between area and definite integral

Q1. Calculate the area of the region bounded by the graph of f(z) = 22 — 3z and
the x axis in the interval [0; 6]

/j(:ﬁ — z)dz.

Interpret the result graphically.

Q2. Calculate

74% of the students answered the first question incorrectly, and half of them,
didn’t draw any graph. 56% calculated the integral instead the required area. The
correct answers were accompanied by a graph.

In Q2, the required calculation is direct, regulated only by rules and procedures,
and was answered correctly by the 65% of the students. However, only 17% in-
terpreted the result correctly. Among those who attempted the required graphic
interpretation there were a variety of contradictory responses like: “It is not the
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area” or “the result of the integral is equal to the area”. These students didn’t vi-
sualize the integral of a negative function in [a,b] as “(—) the area of the region
determined by f with the x axis in [a,b]”. In this case, concepts and procedures
were not connected.

Other questions explored about the same issues, but demanding from students a
higher level of codification, requiring the construction of examples, like these ones:

Q3. Show the graph of a non negative function in [a,b] but with null integral in
this interval.

Q4. Show the graph of a function in [a, b], such that the definite integral is smaller
than the area bounded by the curve in the interval.

In Q3, 49% of students responded incorrectly. 31% of students did not pay
attention to the requirement of “f nonnegative”. This situation reveals a fact that
had been already observed in other studies related to visualization (Cavallaro &
Anaya, 2003): many of the students cannot attend to all the requirements, focusing
a just one of them.

In Q4 only 52% of the students answered correctly, showing again a gap between
the concept of area and definite integral. The comparison with the results of Q1 (only
17% of correct responses) seems to indicate that when the function and the interval
is given, the students focus mainly on the procedure of calculation, neglecting the
meaning.

Other questions were aimed to identify Riemann integrable functions on an in-
terval, like:

Q5. (Labrana, 2000) f is definded in [0,4]. The graph of f is what is shown in the
figure.

a) Is f integrable in [0,4]?

b) Is it possible to calculate the area of the region bounded by the graph
of f and the z axis in this interval? Explain your answer.

Q6. Show the graph of a discontinuous but integrable function.

The responses to these sort of questions revealed a dissociation between the
concept of area and Riemann integral and errors about the concept of integrability.
In Q6, the construction of a graph is required. There were 87% of correct responses,
though only the 48% considered a discontinuous function with finite jump, 17%
of students believed that an integrable function may have at most a removable
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discontinuity, though they used integrals to calculate the area. This fact shows that
the continuity of a function will not persuade or dissuade a student to connect or not
integrals and areas, they will do it for calculus purposes even if they are convinced
that the function is not integrable. Visualization of an integral as an area seems to
be connected to procedures for calculating, rather than to a concept.

In Q5 the sufficient conditions for existence were mistaken for the necessary ones,
what was evidenced in answers like: “yes, because f is bounded” or “no, because f is
not continuous” (what is consistent with other researchers’ findings, as Labrana,
2000). The incorrect responses could be the result of a lack of variety in graph and
analytic examples of discontinuous functions.

Some other questions were aimed at studying the relationship that students es-
tablish between the graph representation of the primitives of a given function on an
interval. One of them (Q7), presented the graph of a primitive of f, and required
drawing another primitive of the same function.

Though 59% of the students responded correctly, the majority of incorrect an-
swers were based on incorrect visualizations of the primitives, like horizontal shift
of the curve, or reflections with respect to the x axis, mistaking “another primitive”
for a function that bounded the same area.

Though these questions presented a direct relationship between concepts and
visual interpretations and thus, a rather simple process of codification and de-
codification of visual information, the students show a gap between procedural and
conceptual knowledge, which became evident during this process.

Other questions, required a higher ability in coding and decoding visual informa-
tion and a higher level of abstraction and conceptualisation of the involved notions.

Some of these questions inquire about the connections between definite integral,
integral function and area, for example:

e figure represents the graph of a unctlon — et us consider
Q8. Th fi h h of a f f:10,7 R. L id
F:[0,7 — R the function defined by F(z) = [ f(t)dt. Calculate F(4)
and F(7). Draw the graph of F.

—

Q9 Let F be a primitive of f in [0, 2]. Is there any relationship between the shaded
area and the length of the segment marked on the y axis? Explain your answer.
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—J_ )
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These sort of questions require reverse thinking,—a kind of reflective abstrac-
tion (Dubinsky, 1992)— and a process of synthesis—that intervenes in the process
of understanding mathematics—to perceive the relations between facts apparently
dissociated (length of the segment and area of the region), organizing them in a
consistent whole. (Sierpinska, 1992.)

In Q8 only 29% of the students were able to obtain the required results, and most
of them visualized it from the graph. The others, failed in an attempt for analytic
solution. Some of them mistook F' for f or showed inconsistency between the graph
and the analytic solution.

Only 18% of the students were able to draw the integral function and most of
them weren’t able to visualize the way to integrate a piece-wise function when the
upper limit of the interval is variable.

In Q9 the percentage of non-respondent students was very high: 65%, and only
23% of the answers were correct.

The difficulty of this problem lies in the requirement to relate magnitudes visually
associated to different conceptual systems: length of the segment = ordinate of F'(x)
and the area bounded by the graph of the function f. Understanding the concept of
integral function requires that students may be able to visualize the “accumulated
integral ‘up to x’”. This concept is cognitively different to the notion of a primitive
as an anti-derivative, and it is precisely, the fundamental theorem of calculus that
integrates these notions in the same schema. Students should have a correct mental
schema of this theorem to answer this question. The conceptual knowledge involved
in it is constructed at a higher level of abstraction than the information that it
is connecting (definite integral and derivative): it is a knowledge constructed at a
reflective level.

—104+

Final remarks and recommendations for teaching

The capability of coding and decoding different levels of visual information provided
a good frame to assess students’ conceptualisation about the involved notions.

A general conclusion of this study could be that insufficient training in handling
visual information together with a poor valuation of visual resources could possibly
affect students conceptualization and performance in several tasks related to the
definite integral. However, it would be sensible to develop deeper studies in order
to comfirm this assertion.
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At the procedural level it was observed that:

e The students showed a strong preference in applying rules and procedures and
not always were able to use graphs to guide their reasoning and resolution.

e The definite integral turned out to be for them a mere juxtaposition between
the anti-derivative and the Barrow rule, of the type “rules without reasons”.

e The students were not able to cope with all the requirements or constraints of
a problem at the same time, neglecting important information.

e Drawing graphs or interpreting them was a difficult task for these students.
Difficulties in the correct visualization of the resulting 2D-regions may become
a source of errors.

In the conceptual level it was observed that:

e The students’ responses revealed dissociation between the concept of an area
and Riemann integral.

e The tasks involving continuous or discontinuous piece-wise functions showed
that the students have not assimilated the concept of integral function which
is knowledge to be constructed at a reflective level.

e Integrating from the graph implies the connection of concepts at a higher level
of abstraction and reverse thinking. The students were not able to respond
adequately to these requirwements.

The deficiencies that these students presented when dealing with visual resources
might be caused, on one hand, by the excessive emphasis that teachers put on
analytic resolutions, and the rejection of visual reasoning, considering it intuitive and
inaccurate, and, on the other hand, by the students’ tendency to compartmentalize
conceptual and procedural knowledge related to the concept of the integral.

Training students in activities related to codification and de-codification of com-
plex visual information may help them:

¢ To develop the processes of representation, abstraction, modelling, generaliza-
tion and synthesis and a reversibility of thinking, which are important compo-
nents of advanced mathematical thinking.

¢ To get a holistic view of each problem-situation
This could be done in two ways:

1. By encouraging interpretation of graphs, and of numerical data when solving
a problem, and relating them to possible images (applied mathematicians do
this).

2. By encouraging the construction of examples and of graph of typical situations
and of non-standard situations, in order to elicit synthesis and abstraction
processes and also to control misleading visualizations and intuitions.
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In 2002 the SEFI Mathematics Working Group revised its original 1992 advisory
curriculum, [1] and replaced it with Mathematics for the European Engineer—a
Curriculum for the Twenty-first Century, [2]. This is a more structured and detailed
document than the original and includes a phrasing of the curriculum in terms of
learning outcomes rather than a list of topics to be covered. The increased detail is
finely itemised, and Levels 0 (school), 1, 2, & 3 of core mathematics specified with
general attention to the various disciplines of engineering.

The SEFI Core Curriculum, [2], or SEFI CC, serves as an advisory document
to those designing syllabuses in mathematics for engineers in universities across
Europe. The Bologna Declaration calls for a recognition between syllabuses with a
view to student exchange between institutions and countries so designers will seek
a mechanism by which these can be contrasted in detail. The SEFI CC provides an
ideal resource to input as raw material. Each of its three lower levels (0, 1, 2) is
divided into four or five component parts in which lie the main topics and subtopics.
Levels 0, 1, 2 represent hierarchical progression from school forward to the first two
stages of university education. Also, the subtopics within each topic are largely
progressive as well, whereas the main topics comprise a useful sequence of delivery,
which is suitable to the teaching of a course. The hierarchy is thus broadly in place
and the work currently under way is aimed at structuring the subtopics within the
topics into clusters of learning objectives. Meeting the learning objective within a
cluster rests upon a learning achievement in preceding clusters, topics and levels so

50



The SEFI-MWG Core Curriculum

the Curriculum is being put into the form of a directed graph comprising aspects of
a tree structure.

Before we give a practical example of how the directed graph might operate in
a particular case we need to remind ourselves of the overall schemata of the SEFI
CC.

Core Zero
Algebra (0A /pre-core)

Analysis and Calculus (0C)

Discrete Mathematics (0D)

Geometry & Trigonometry (0G)

Statistics & Probability (OP)

Core Level 1 Level 2

Analysis and Calculus  (1AC) Analysis and Calculus  (2AC)
Discrete Mathematics (1DM) Discrete Mathematics (2DM)
Geometry (1G) Geometry (2G)
Linear Algebra (1ILA) Linear Algebra (2LA)
Statistics & Probability  (1P) Statistics & Probability — (2P)

Level 3
[Elective Topics—based upon the above]

Core Zero starts off with Algebra as its underpinning component part. This
includes the most basic but relevant highschool pure mathematics. It comprises
4 main topics, arithmetic of real numbers; algebraic expressions and formulae; lin-
ear laws; quadratics, cubics and polynomials in general. Within the topics are
14/17 subtopics making 60 subtopics overall. By subdividing each of the topics into
three to five identifiable clusters we can choose a subtopic, e.g. sketch the graph
of a quadratic equation, and argue that the learning objective behind it demands
much of the knowledge of linear laws such as Cartesian co-ordinates and straight
line graphs, but possibly not including linear inequalities. The knowledge behind
linear laws in this respect rests upon definable elements of arithmetic and algebraic
expression. And this is just the beginning, as ‘OA’ underpins almost all of ‘0C’ and
key elements of ‘0G’ whereas the very small components ‘0D’ and ‘OP’ have a more
empirical startpoint and need new concepts and a much reduced dependency on
‘0A”.

The ‘pyramid of knowledge’ principle described so far can be extended through-
out the entire SEFI Core Curriculum in layered cake form. The Levels 0/1/2 assist
considerably with general definitions though protocols need to be adopted in defin-
ing terminologies acceptable to syllabus designers. At each level it is best to take
analysis and calculus first of all as this very largely subsumes its utlisation in the
other component parts, for example ‘2P’ might use ‘2AC’. Very occasionally there is
a parallel interrelation between component parts, usually geometry and linear alge-
bra. Also an acknowledged progression in the subtopics within a topic is necessary so
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that successive clusters are progressive in that topic. Sometime though the rule can
be broken. At a deeper level of refinement, one can reasonably argue, for example
that a student could apply the method of integration by parts to indefinite/definite
integrals by performing such on polymonial or power functions but were it needed
to solve practical problems which require the evaluation of an integral then rational,
trigonometric, exponential or logarithmic functions should likely be included. This
represents a much higher level of drill and practice and this would always be true
whenever practical problems are involved. Furthermore any use numerical methods,
software, or computer algebra practice demands a considerable knowledge of the
underlying analytical principles and limitations. This is reflected in the structure
being proposed.

It is planned to store the full range of topics and subtopics in an interrogative
database. By choosing a subtopic we identify the cluster and include any subtopics
within it as necessary. We also identify the immediately supporting clusters/topic
(and the subtopics within them), and recursively through all others down to the
bottom of Core Zero.

A discussion group at the 12th SEFI-MWG Seminar is invited to consider the
structuring of the SEFI CC in this form. The hope is that the database will be
developed at the University of Bristol and will be made available to the academic
community.
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Annex A: Illustration of the Track of Hierarchical Dependency

‘Understand how existence and uniqueness relate to the solution—of an
ordinary differential equation’

2AC Analysis and Calculus
Topic 1—Ordinary Differential Equations
Cluster 1
Understand how rates of change can be modeled using 1st & 2nd deriva-
tives

Recognize the kinds of boundary conditions which apply in particular
situations

Distinguish between boundary /initial conditions
Distinguish between the general/particular solution
Understand how existence and uniqueness relate to the solution
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Classify differential equations and recognize the nature of their general
solution

Rests on:

1AC Analysis and Calculus
Topic 5 Differentiation
Cluster 1
Understand concepts of differentiation and smoothness
Differentiate inverse functions
Differentiate functions defined implicitly
Differentiate functions defined parametrically
Cluster 2
Locate any points of inflection of a function
Find greatest/least values of a physical quantity
Topic 7 Methods of Integration
Cluster 1

Obtain definite, indefinite integrals of rational functions in partial fraction
form

Apply the method of integration by parts to indefinite/definite integral
Use the method of substitution on indefinite/definite integrals

Rests on:

0G Geometry and Trigonometry
Topic 5 trigonometric identities
Topic 4 trigonometric functions
Topic 3 Co-ordinate geometry—not polars
Topic 2 Basic trigonometry

Topic 1 Geometry
0C Analysis and Calculus

Topic 6 indefinite integration

Topic 5 stationary points

Topic 4 rates of change/differentiation

Topic 3 logarithmic/exponential function
Topic 2 sequences/series/binomial expansions

Topic 1 function and inverses
Rests on:

0A Algebra (all)
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Introduction

The formation of engineers requires the development of a logical mathematical think-
ing, however, it is well known that the acquisition of this sort of thinking is a slow
and difficult process. As a consequence, there is a need for systematic studies of
the specific cognitive difficulties of engineering students who deal with quite ad-
vanced mathematical concepts. Within a research project in mathematics education
developed in the National University of Technology, several research works were con-
ducted with the aims of detecting and explaining the above mentioned difficulties
and of finding theoretical bases to recommend remedial actions in teaching practice.

Many of the difficulties we are working on are related to intuitive mental models,
intuitive heuristics and their interaction with logical schemas and formal knowledge.
In this presentation, the results of an exploratory study composed of three research
works will be shown. These studies were aimed at identifying the intuitive models,
heuristic and intuitive reasoning and its relation with schemas and formal knowledge
in groups of engineering students in the first, second and third year of mathematical
courses.

A common framework to study the intuitive processes is the theory provided by
Fischbein (1987). According to Fischbein, an intuition is a cognition that appears
subjectively as self-evident, directly acceptable, holistic, coercive and extrapolable.
Coerciveness and self-evidence of intuitive ideas are related to the human being’s
tendency to organize and integrate the cognitions within a coherent and behaviorally
efficient structure. Though the intuitive cognitions and models may help in the
elaboration of internally coherent representations, these representations may be in
contraposition with reality.

A human being has a tendency to integrate easily available information ignoring
other information that would require a more sophisticated effort of investigation
(Fishcbein and Snarch, 1997 ). Fischbein and Grossman (1997) have suggested
that intuitions are always based on structural schemas, that is to say, on organized
systems of sequential interpretations and procedures which express a certain level of
mental maturity and sufficient amount of experience.
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Intuitive mental models: the case of the unit
impulse

When students have to face a notion of advanced mathematics that turns intuitively
unacceptable for them, they produce, deliberately or unconsciously, more acceptable
intuitive substitutes: the intuitive models, that may be understood, represented and
manipulated like other concrete realities. (Fischbein, 1987). The use of a model
involves thinking productively in terms of the model providing a simplified version
of the reality. However, this can also present an inconvenience, if we consider the
conclusions that the model used might suggest for the original. Usually we are not
aware of many of the properties of the models used in a reasoning process, and, thus,
they appear in an uncontrolled way.
Among intuitive mathematical models we will distinguish:

e The intra-mathematical analogies, in which an isomorphism is established be-
tween the original and the model despite their belonging to different conceptual
systems.

e The paradigmatic models, in which the original consists of a class of entities,
whereas the model is provided by an example or subclass of the considered
category (Fischbein, 1987).

In one of our research works we have studied some difficulties and misconceptions
of engineering students in the formalisation of the generalised function concept,
which had been systematically observed in written and oral examinations and even
in the application to the modelling of real situations. In particular, we studied
the case of the unit impulse Delta function and its mathematical model within the
distribution theory.

The study, carried out with 30 students in the third course of Mathematical
Analysis included:

a) The revision of textbooks of systems and signals usually consulted by students.

b) A modelling activity, which was presented to the students with the aim of
observing how they established the isomorphism between the mathematical
theory and a physical model. It was related to the following situation:

A ball is hit by a hammer on a plane horizontal surface,
in such a way that it moves in a straight line and without
friction.

¢) 16 hours of mathematical instruction in relation to distribution theory.

d) The analysis of the individual written respects about the modelling activity
that students presented.

e) A questionnaire about the impulse function and individual interviews with
several students, which allowed us to study the students’ beliefs, their ways of
reasoning and the intuitive models evoked during the problem-solving.
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From the results of these data we could conclude that:

e Students’ showed high ability to apply theories and definitions when modelling
a situation or solving a problem. However, this does not mean that the cor-
responding concepts have been internalised by them. This fact was observed
during the interviews in which student had to justify their responses.

e The distribution model turned out to be intuitively unacceptable for the ma-
jority of the students considered in this study. Conceiving Delta as a function
of a numerical variable—null everywhere except at zero, where it is infinite
and with an integral different from zero—turned out to be intuitively more
acceptable.

e Contradictions were ignored giving Delta a status of “Special” or “Different”.
This last conception is encouraged by texts commonly used in Electronics, in
an attempt to simplify. Yet, some of these texts usually offer an Appendix
with a more rigorous presentation, which is usually ignored by students.

e The familiar model of a numerical function, assumed as paradigmatic, does
not allow the acceptance of general ideas such as function spaces and functions
defined on these spaces, even if an isomorphism has been previously established
with signals taken as analogical models.

Intuitive heuristics

Human beings have the tendency to organise and integrate cognitions—intuitive or
logical and analytical—in a coherent and efficient structure. With development of
age, experience and instruction, strong and stable beliefs are established. People
rely on a number of heuristic principles, which reduce the complex tasks to simpler
judgmental operations. In general, these heuristics are useful, but sometimes they
lead to systematic errors.

We have studied some of these intuitive heuristics in relation to cognitive schemas
and instruction: heuristics in probabilistic thinking (Tsversky & Khaneman, 1983)
and intuitive rules (Stavy & Tirosh, 2000).

Heuristics in probabilistic thinking

In this study we have investigated many of the misconceptions mentioned by Tversky
and Khaneman (1983) and by Fischbein and Grossman (1992), but considering the
impact of instruction at university level and the evolution of the intuitive heuristics
along the time. The most remarkable findings among our students were:

e Insensitivity to the sample size, revealed in questions like:

The probability of obtaining 3 heads when tossing a coin
10 times is smaller, bigger or equal to the probability of
obtaining 15 heads when tossing a coin 50 times.
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e The difficulty related to the effect of inversion in the time axis, consists in the
insensitivity to the stochastic structure of a problem, under the influence of
the causality principle and the irreversibility of time, which is deeply rooted
in mental activity. It was revealed in questions like:

There are two gold and two silver coins in a box. Peter
takes out a coin and without looking at it. Then, he takes a
second coin that is golden. The probability that the first coin
was a gold one is smaller, bigger or equal to the probability
it was a silver coin?

In order to assess the evolution through instruction of these difficulties, we sur-
veyed three groups of 30 students each one in different situations in relation to
instruction: group 1: without formal instruction about probabilities, group 2: with
formal instruction about probabilities but without final evaluation, group 3: a year
later where they had passed the final exam of the subject.

A questionnaire with several problems aimed at detecting the above mentioned
difficulties was delivered to the three groups, asking students to justify each one of
their answers.

The results related to insensitivity to the sample size, showed a very low per-
centage of correct responses in the three groups (between 7% and 24%) and a strong
influence of the belief that the size of the sample is not important. Proportionality
was the underlying schema that was incorrectly used or overestimated to produce
the incorrect responses. The highest performance was for group 2 and the lowest for
group 3. This effect would mean that despite the instruction and passing of time,
knowledge become less available and the person returns to strongly rooted intuitions.

In relation to the effect in the time axis, the results showed that only 48% of
student could solve the problem correctly. The causality principle is the underlying
schema: the idea that a fact cannot act retrospectively on its cause.

Students are strongly influenced by the order of events in the problem and this
prevents them from realising the genuine stochastic structure. The inversion in the
time axis, seems to contradict basic intuition and associated difficulties are persis-
tent despite the presence of formal knowledge. However there is an improvement
in students of group 3 (62% of correct responses), possibly because this group was
formed by more mature students with a better training in mathematical modelling
and formalization. This experience let them correctly handle the principle of causal-

ity.

Intuitive rules

The theory of intuitive rules, developed by Stavy and Tirosh (2000), proposes that
students’ responses may be often determined by irrelevant external features of the
tasks, rather than by underlying concepts.

Two of the studied intuitive rules are: “More A—More B” and “Same A—
Same B”. According to these rules, perceptual quantity A is taken as a criterion
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for evaluating another quantity B, though the former is often not relevant to the
required comparison or cannot, by itself, serve as a criterion.

The Rules More A—More B and Same A—Same B imply reasoning mechanisms,
such as similarity, analogical reasoning, over-generalized logical schemas, but at the
same time, they are considered intuitive ways of reasoning because they are ac-
companied by a strong feeling of self-evidence, confidence, perseverance, globality
and coerciveness, which constitute, according to Fischbein, the distinctive charac-
teristics of the intuitive reasoning. Several researchers have studied how these rules
affect responses in mathematics and science students, but most of those studies were
developed with rather young students.

In order to study the influence of intuitive rules on engineering students dealing
with advanced mathematics, the following problem was presented to 30 students.
Such a problem could be modeled and solved using formal knowledge about differ-
ential equations conveyed during the usual lessons.

A buried tank contains an unknown volume of salted water. It
18 suspected that the tank is leaking, spoiling the environment.
Though it is not possible to measure the volume or the quantity
of salt directly, it is possible to inject and extract water at the
same rate of 1 gal/min.

The first extraction reveals that the initial concentration is 0.2
Ib/gal.
The injected solution has a concentration of 0.05 lb/gal.

It is assumed that the solutions mix instantaneously in the
tank.

Several data of outcome were given, and students were re-
quested to model the problem mathematically, to solve the dif-
ferential equation and find the function “quantity of salt”, con-
sidering the possibility of a leakage. They should also model
and solve a similar situation where there is no leakage.

Students presented a written report with the solution for both situations.

After a week, they were interrogated again about the problem, but this time,
they were asked to make a qualitative analysis regarding the evolution of volume,
concentration, and quantity of salt in the tank (that is to say, if these variables
increase, decrease or keep constant) in both cases: leakage (L) and no leakage (NL).

8 students were also interviewed and interrogated about the same issues.

Results showed that although 94% of the students could solve the problem cor-
rectly in both situations (L and NL), when they were asked about the evolution
of the processes, many of them were influenced by the intuitive rules focusing the
attention on one of the variables only.

For instance, in the evolution of concentration, despite the fact that 96% of the
students considered that the concentration diminishes in the L case, only 20% of
them considered both effects in the analysis: dilution and volume decrease. The rest
of them focused on only one of these variables.
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In the NL case, 64% of the students considered that the concentration diminishes.
That is to say, there were 32% of them who thought that concentration diminishes
in the L case and does not diminish in the NL case. Among them, a half consider
that the concentration keeps constant because “the volume keeps constant”. These
answers are clearly in line with the intuitive rule Same (volume)—Same (concen-
tration). The other half believed that the concentration increased because “we are
adding salt”, and thus, they forgot about the dilution effect. In this case, they
reacted according to the rule More (quantity of salt)—More (concentration).

In the analysis of the evolution of the quantity of salt, students had even more
difficulties. A higher percentage of the students did not answer or did not account
for their responses.

Again, in this situation, there were 16% of the students who associated the evolu-
tion of this variable with the volume (Same (volume)—Same (quantity of salt)).They
considered that the quantity of salt keeps constant in the NL case because “the vol-
ume doesn’t change”. There were also 24% who considered that the quantity of salt
increases because “we are adding salt”, neglecting other effects.

Final remarks

Intuitive reactions are strongly influenced by the experience and psychological pro-
file of each individual. However, certain patterns related to intuitive models and
intuitive heuristics can be identified when students deal with certain concepts and
problem-solving tasks in mathematics. These intuitive ways of reasoning may create
difficulties in the acquisition and application of mathematical knowledge.

The study of the evolution of intuitive schemas in relation to complex pieces of
mathematical knowledge becomes paramount at university level.

Logical schema and bodies of mathematical knowledge are expected to develop
and strengthen with age and/or instruction. Consequently, intuitive reasoning may
lose its power in favor of other competing knowledge. However, in this study we could
observe that some intuitive heuristics are resistant to age and experience evolution.

In the students’ responses to certain mathematical tasks, we could observe that,
in each intuitive response there seems to be an underlying logical schema, or a
mental model intuitively accepted by the student, which interacts with the specific
restrictions of the presented problem.

In the problem of the Delta function, a more acceptable intuitive model was de-
veloped by the students, who ignored the contradictions and focused their reasoning
on some specific properties of that model.

In probabilistic thinking, the logical schemas of proportionality and causality
influenced the students reasoning strongly.

In the problem modeled by a differential equation, the responses were influenced
by intuitive rules that might have been the result of a more general tendency to
extrapolate given information to new situations.

In all these situations, relevant information and pieces of mathematical knowledge
were neglected and students focused on some variables only.
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In order to design didactical interventions when dealing with concepts of certain
complexity, it seems highly recommendable that teachers which be aware of the
students intuitive models and intuitive heuristics.

Modelling activities in real situations seem to be suitable instances for helping
students become aware of their own intuitive models. These activities could help
students to develop meta-cognitive attitudes.

Problems like the ones posed in these studies, which are known to elicit intuitive
responses, should be presented to students in order to produce a cognitive conflict
between their beliefs and the associated formal knowledge. The solution to this con-
flict, the analysis of the problem structure and the source of possible errors produced
by intuition could help them overcome these difficulties and possibly generate more
adequate intuitions.
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5 Formulation of the problem

Mathematical education of engineers in the two-cycle system brings several method-
ological problems. One of them is the question of choosing the appropriate extent
and depth of the teaching material, which apparently should be different for bache-
lors and for engineers, according to different educational goals in both categories.

One part of the students will finish their study after the first cycle. For them, the
mathematical education should provide a solid background for practical applications.
Another part of the students will continue the study in the second cycle. These
students must be prepared for applications, as well, but they will also need a basic
theoretical knowledge in their future work, in order to understand the available
literature and to use it creatively. There is also the third category of students: the
bachelors coming from other universities, wishing to continue their study at master
level and become engineers.

The question stands as follows: can mathematical subjects in the first cycle be
taught in the same way for the first and the second group? and: can the mathemat-
ical subjects in the second cycle be taught in the same way for both the second and
the third group?

The basic question in other words: is it possible to organize the mathematical
education in the first cycle in such a manner which would be appropriate at the same
time both for the future bachelors and for the future engineers? and analogously for
the second cycle.

In which mathematical subjects is this possible? How to do it in an optimal way?
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6 Goals of the mathematical education for engi-
neers

This presentation describes one possible solution to the above problem of the two-
cycle approach, demonstrated on the subject “Methods of Operations Research” at
the bachelor and engineer study levels, in notation: MOR 1 and MOR 2, respectively.
The ideas are based on the experience at the Faculty of Informatics and Management,
University of Hradec Krélové, in the Czech Republic.

Design of the lectures, exercises and exams on both levels of the subject are
based on the goals of the mathematical education in general. According to the
author’s opinion presented on former SEFI seminars, a bachelor or an engineer with
the proper mathematical education should:

- be convinced in the usefulness of mathematics for his/her work

- understand the corresponding mathematical notions in some necessary extent
- be able to use the mathematical methods adequately

- be aware of the limited applicability of the methods

- know which of the mathematical methods is the most appropriate in a given
situation

- be able to recognize situations, when an approximation is better than the exact
computation

- perform the mathematical methods accurately
- be able to discover and correct the mistakes in the computations

We have tried to organize the teaching of the both subjects MOV 1 and MOV 2
in such a way that the differences in the mathematical educations between the first
cycle (bachelors) and the second cycle (engineers) will be taken into account.

7 Methods of Operations Research 1

Every lecture on MOR 1 begins with a motivation example that indicates which
type of problem will be considered. The simple example shows the tension between
the desired result and given limitations in the presented situation. Then a solution
of a special case is found and a discussion follows, on using the similar solution idea
in analogous situations. The discussion leads to a general method, applicable to a
defined class of problem.

For a more exact formulation of the method found in the first part of the lec-
ture, and for the descripton of the problems, which can be solved by that method,
necessary notions must be introduced, and their properties must be studied. Mathe-
matical models of the problem and the mathematical notation are useful and efficient
tools for this purpose. Finaly, various examples are computed, showing details and
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limitation of the explained method, as well as the conditions, which are necessary
for proper and reliable application.

8 Exercise to MOR 1

The exercises take place in computer laboratories. Every student is connected to
the university web, where the texts of the examples can be found. The texts and the
necessary data are written in Excel tables, into which the student writes his/her own
solution. In this way, every student is systematically creating a personal database of
solved examples, which he/she can later use in preparation for the exam at the end
of the semester. As a feedback, the students have at their disposal a set of solutions
prepared by the teacher.

A weekly set of examples for the exercise is accompanied by another set of ex-
amples for the individual work at home or in computer laboratories. Another folder
at the university web contains the teaching texts, which were projected during the
previous lectures. As a consequence of this arrangement, every student advances in
his/her own rate of study.

The main purpose of this cycle is to give a clear idea of the problems and of how
the solution methods work. For this reason the given problems are typical ones, they
are not too large and the Excel Solver is not used in this cycle.

9 Methods of Operations Research 2

The principal arrangement of the lectures and exercises in the second cycle is similar
to that in MOR 1. The basic ideas from the first cycle are assumed to be preliminary
known (this concerns mainly the third category of students: the outside incomers).
To provide the students with a deeper knowledge of the subject, more advanced
introductory examples are used as motivation. More complex problems are solved,
showing a variety of possible subtle complications and variations. The considered
methods are more complicated and more powerful than they were in the first cycle.
The examples contain larger amount of data, and therefore the Excel Solver is used
at the lecture and at the exercises, as well.

The main purpose of MOR 2 is teaching the students to use the appropriate
methods and to use them properly. The logical analysis of a given problem and the
correct interpretation of the results provided by the computer solver are of central
importance. The advanced problems are not only larger and more richly structured
than in MOR 1 but the dependence on changing parameters and/or conditions is
also considered.

10 Exams on MOR in computer laboratory
Performing exams in computing laboratory has several advantages. In our MOR

teaching system the conditions on the exam are equivalent to those on the exercise.
Computers help students to concentrate their attention mainly to methods, and
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less to computations with numbers. Computers save valuable time which otherwise
would be vasted by performing automatic operations on input data. The ouput data
are computed quickly and precisely. Use of computers makes it possible to work with
larger and more complex problems in reasonable time.

On the other hand, the computers connected to the university web and to internet
provide large possibility of worldwide connections, and in the consequence, they
enlarge the risk of cheating attempts. One way out of this unpleasant situation
would be taking repressive measures: disconnecting computers off the web during
the exam, supervising strictly the students, creating the atmosphere of fear so that
students would not dare to cheat. We do not support this negative attitude to
students.

Our approach to eliminate the undesirable behaviour of the students is based on
several simple exam rules, under which the most efficient way of doing the exam is
the individual independent work. Our exam rules make any attempts of misusing
the web capabilities less efficient and relatively too much time-consuming.

The basic exam rule is that the exam tasks are distributed to students in a
printed form, and the answers (results of the computation) must be written on the
indicated positions on the exam paper. Further, it is forbidden to transform the
complete text of the tasks to an electronic form and to give a task, or a part of it,
to other persons.

The teacher can easily maintain a relatively large non-public database of exam
tasks in the electronic form, with possible creation of many variants, and quick
computation of the correct answers by a computer solver. Thus, practically every
student in the exam room gets a different sheet with his/her individual tasks.

The positive approach to students is expressed by the rule allowing them to use
their personal databases of solved examples, and even more, to use every teaching
material placed on the web. As the time for the exam is not very large, and the
student is the only person who knows the tasks written on his/her exam sheet, the
study materials can efficiently be used only if the student really understands them.

11 Computer-aided education at FIM UHK

Several remarks concerning computers in education will be presented in this final
section. Involving computers in teaching the Methods of Operations Research in
two cycles, as described above, is nothing else than just using the relatively good
computer equipment at the Faculty of Informatics and Management of the University
of Hradec Krélové. We may characterize it as “computer-aided education”. For a
teacher it means using computers for more efficient preparation of the standard
teaching materials and for some extension of the standard teaching methods. To a
student, the above use of computers means the possibility of choosing an individual
style of learning and a time independent access to the subject.

In the last years, there is a high effort to prepare e-courses at FIM UHK. At
present time, 60 e-courses on various subjects have been allowed for use in the regular
teaching process, and a large number of further e-courses, among them MOV 1 and
MOV 2 are in preparation. Other 15 e-courses are used in the life-long learning
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system provided by the faculty. As a rule, the e-courses at FIM UHK are prepared
in the e-learning system WebCT. The advantages of e-courses for the students are:
the feedback, dialogues with teacher, self-evaluation tests and further facilities. The
experience with e-teaching and e-learning are systematicaly evaluated, so that the
positive aspects, as well as the negative ones, can be taken into account in creating
further e-courses in future.
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Considerable effort is made and much time is spent trying to contribute to the
development and improvement of basic mathematical learning at higher technical
educational institutions in Europe. The regular seminars of the SEFI Mathematics
Working Group (MWG) provide a basis for serious and valuable discussions concern-
ing the applicability of computers and software packages to mathematics teaching.
These have led to the appearance of the original and the revised versions of the SEFI
Core Curriculum in Mathematics.

It goes without saying that all the efforts and further discussions on the matter
would be doomed to failure unless both parts of the “student-lecturer” link are
adequately considered. Evidently, the former link (the student) should be prepared
and well disposed towards mathematical studies. The willingness of a student is a
necessary pre-condition for the successful mastery of the mathematical truths. But,
it is not sufficient. We are well aware that engineering students cannot perceive
mathematics in the same way as professional mathematicians usually do.

So, we are about to draw your attention to the lecturer of mathematics (the
second link; see Fig. 1). Great demands are made of him, namely:

e teaching ability (psychological preparedness);

e pedagogical talent;

e excellent understanding of the subject;

e desire for knowledge, desire for being perfect not only in the teaching of math-

ematics, but also in one or another scientific research area (relevant to pure or
applied mathematics).
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PRE-REQUISITE KNOWLEDGE MOTIVATION
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A STUDENT
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LEARNING
(At higher technical
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TEACHING MATERIALS
INSTRUCTIONAL/

TRAINING AIDS THE LECTURER OF

MATHEMATICS
COMPUTERS (personality, profesional
(hardware, software) skill, scientific interests)

Fig. 1. Many factors influence the process of mathematical learning

The latter circumstance (demand), to our mind, is of utmost importance (Fig-
ure 2). Firstly, scientific research activities grant the lecturer of mathematics a right
to bear the status (halo) of a scientist. Secondly, the lecturer of mathematics, who is
engaged in progressive scientific work, will, undoubtedly, be better prepared to an-
swer questions of the audience (curious engineering students). The lecturer-scientist
will always be ready to give serious explanations, based on his own experience, to
the most traditional freshmen’ remark—“What is the good of mathematics at all?
Why is a knowledge of mathematics (mathematical techniques) essential for their
future practical work?”.

Evidently, the path of self-perfection can be neither an end in itself nor isolated.
Labour-consuming activity, personal contacts, interchange of opinions and views
are the necessary prerequisites. In their turn, scientific interests, scientific research
work as well as the scientific achievements of the lecturer stimulate cooperation
and partnership among mathematicians-scientists in pursuing the implementation of
various tasks—international research projects, international programmes (including
students/staff mobility), etc.

To try to clarify the real influence of the scientific research activity of the lec-
turer on the quality of delivery of mathematical courses, we have distributed a
questionnaire to a number of undergraduate and graduate students of the Faculty of
Fundamental Sciences (Kaunas University of Technology). The respondents (55, in
total) were asked to estimate (on a five point scale) the topicality of some mathemat-
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international programmes) PROBLEMS

Fig. 2. The scientific research activities of the lecturer of mathematics are of great use

ical courses (20 study modules) delivered by lecturers of the Department of Applied
Mathematics, to estimate (variable X7) the presentation of the course material in
the context of up-to-date research achievements (within the country, world-wide;
variable X5), to estimate the efforts of lecturers to illustrate the application of a
particular mathematical tool (technique or approach, associated with the course
material) to solving actual engineering problems (variable X3) and, finally, to esti-
mate the attempts of lecturers to relate the course material with their own scientific
research attainments (variable Xy).

Also, the board of experts from the faculty of Fundamental Sciences (Kaunas
University of Technology) has prepared qualifying appraisals (on a five point scale;
variable Y') for lecturers included in the evaluation. The qualifying (rating) criterion
for each lecturer was determined by the number of serious scientific publications (In-
ternational Journals, Conference Proceedings), and the level of supervising activity.

Statistical analysis results revealed a positive correlation between moderate sci-
entific research activity of the lecturer of mathematics and the quality of presentation
(from the student’s standpoint) of basic and specialized mathematical courses. To
be more precise, the Spearman’s correlation coefficients for ranked data took the fol-
lowing values: o(X1,Y) = 0.5, o(X2,Y) = 0.57, 0(X3,Y) = 0.64, o(X4,Y) = 0.75
and are significant at the 0.05 level of significance.

Also, it was found that the scientific interests of the lecturer facilitate better con-
veying of the contents of mathematics study modules to the audience, and promote
better understanding of mathematics on the whole.
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We propose here one more idea to change things for the better. It is a question-
naire for the SEFI-MWG correspondents. Everybody, who is engaged in the delivery
of mathematical courses at higher technical educational institutions, is kindly asked
to visit our web site fmf .ktu.lt\maths, and to fill in the questionnaire there, i.e.
to give short answers to straightforward questions (scientific research area, research
object, specialized mathematical courses delivered by a respondent, etc.).

We think that the data collected will form a real basis for the preparation of a
series of lectures (within the SEFI framework) on the successful application of math-
ematical tools to solving a range of engineering problems. Later on, such material
(lectures) could be disseminated, using the Distance Education Learning Networks,
to those students who perceive that problem solving is a good test of understanding
mathematics and who intend to find the right balance between practical application
of mathematics and in-depth understanding.

At the same time, it would be a real support for many mathematics departments
not only in realizing their own curricula, but also in opening cooperation with other
academic institutions.
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The Bologna process in Germany has increased speed since the Berlin follower con-
ference in 2003 as on the next conference in 2005 in Bergen a report of the achieved
goals has to be given.

Now all universities and universities of applied sciences seriously start to switch
into practice all their traditional degree programmes “Diplom” respectively “Diplom
(FH)” into the Bachelor-Master-scheme. Especially the professional qualification
of Bachelor’s degree programmes is discussed intensively and differently within the
given regulatory framework. This includes the mathematical education of engineers.
As a typical example of this process the situation at TFH Berlin will be described.
Everything is turned upside down. A lot of unsolved issues remain.

On the other hand the quality assurance system has been established with the
National Accreditation Council (Akkreditierungsrat), and the accreditation agencies
are successfully working. As an elected member of the accreditation commission
of ASIIN (Accreditation Agency for Study Programs in Engineering, Informatics,
Natural Sciences and Mathematics) aspects of the quality assurance will be presented.

BA /MA—extreme acceleration (1994—2005)

“Bologna” marks not only the creation of the university as the oldest type of
higher education in 1119 but above all the agreement made in 1999—Ilegally without
obligation—Dby at that time 29 and now 40 Ministers responsible for Higher Educa-
tion to realise a “European Higher Education Area” until 2010. The main aims of
this “Bologna process” are the improvement of the mobility of students and teach-
ing staff as well as the strengthening of the competition of the European universities
in a global education market. In fact this process started already in 1994 where
the General Agreement on Trade in Services (GATS) has been signed on a confer-
ence of the World Trade Organisation (WTO) [3]. Their members agreed to reduce

70



The Bologna Process in Germany

the obstacles in the trades of services including educational services. This agree-
ment opened the international competition in the area of university and continuing
education. Next, in 1998 France, Germany, Italy and United Kingdom agreed to
establish a common system of higher education. In the same year the framework
law of higher education for the university system has been passed in Germany that
allowed introducing Bachelor’s and Master’s programmes.

In 1999 in Bologna the minister of 29 countries agreed to create a comparable
university system maintaining the cultural richness and linguistic diversity, based
on its heritage of diversified traditions. Seven main aims have been announced in
Bologna to be realized: (1) a system of transparent comparable degrees by a Diploma
Supplement, (2) a two tier system of study degrees, (3) a credit point system (ECTS)
and modules, (4) student mobility, (5) a European cooperation in quality assurance,
(6) a European dimension of university education, and (7) a life long learning. In
2001 the first follow-up conference took place in Prague. The follow-up conference
in Berlin has been joined by 33 European countries and three new aims have been
added: (8) the participation of students in the Bologna process, (9) the enhancement
of the attractiveness and competitiveness of the European university system, and
(10) the inclusion of PhD-studies. The Bologna process was also expanded to 40
European countries. Furthermore the ministers agreed in Berlin to check at the next
conference in 2005 in Bergen whether the following three goals have been achieved:
(1) the Diploma Supplement, (2) the start of BA/MA programmes and (5) the
accreditation system.

A year ago only a few Bachelor’s and Master’s programmes existed at German
universities. Their existence has been mainly due to isolated initiatives of engaged
members of the staff.

A general discussion did not take place in the academic committees or in the
public. Neither practical impacts nor the teaching methodology has been discussed.
These early new programmes are mainly offered in addition to the existing degrees
and the main focus of interest was on postgraduate and continuing Master’s pro-
grammes. The expectant and reluctant interest in the new BA/MA programmes
was associated with the hope that the existing degrees could be kept and offered
in parallel to the new ones. Since the Berlin follow-up conference of the Bologna
process in September 2003 this hope has been destroyed by the German Secretary
of State for Higher Education. The feeling “who is coming late is punished by life”
has lead to an excessive desire for action of the proper authorities in Germany. The
existing BA/MA initiatives now lead to a chain reaction. The switch into practice
is not centralized; the federal states (Bundesldnder) and the different subjects en-
sure diversity. The proper authorities believe in the regulatory mechanisms of the
educational market.

At German universities, including the universities of applied sciences, there exist
5011 traditional degrees leading to a Diplom, Diplom (FH) or Magister (in arts) and
2851 degrees for the education of teachers [2]. On the other hand there exist 2445
BA/MA programmes [2], out of which 493 BA/MA programmes have been accred-
ited by the National Accreditation Council (Akkreditierungsrat), and for further
645 BA/MA programmes the process of accreditation is running [1]. However, only
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about 6% of all students study in these new BA/MA programmes mainly because
smaller subject had switched to them.

BA /MA regulatory framework in Germany

The latest issue of the conference of ministers for the arts and culture (Kultusminis-
terkonferenz) has fixed the following framework in 2003: Bachelor’s programmes can
last 6-8 semesters leading to the degree Bachelor of Arts, Science or Engineering
(B.A., B.Sc., B.Eng.). Students shall gain a scientific basis and a competence in
methods of their subject and thus shall be qualified for an academic profession. The
Bachelor’s degree shall be the main university degree, i.e. 50%—80% of the Bachelor’s
graduates will directly take up a job in industry. Master’s programmes can last 2—4
semesters leading to the degree Master of Arts, Science or Engineering (M.A., M.Sc.,
M.Eng.). The admission requirement for a Master’s programme is a qualified Bach-
elor’s degree. Master’s programmes can be research or application oriented. The
Master’s degree qualifies in general for the admission to a PhD study. The workload
of the students is measured in credit points according to the European Credit Point
System (ECTS). One semester consists of 30 credit points being equivalent to about
900 hours of student work (participation in lectures, laboratory experiments, semi-
nars and home work or self-study), i.e. 1 credit point means 30 hours workload for
the student. A Bachelor’s programme of 6 or 7 semesters consist of 180 respectively
210 credit points. Consecutive Bachelor’s and Master’s programmes last together
10 semesters and consist of 300 credit points. The profile of the programme has to
be indicated in the Diploma Supplement. There are three different types of Master’s
programmes: consecutive, non consecutive and additional Master’s programmes. A
consecutive Bachelor’s and Master’s programme has a duration of 10 semesters with
300 credit points. However, the portion of each part can be different: 6 +4, or 7+ 3
or even 8 + 2 semesters, depending on the profile of the programme. By changing
the university it is possible that a student studies a 7 semester Bachelor’s and then
a 4 semester Master’s programme or a 6 semester Bachelor’s and then a 3 semester
Master’s programme. A non consecutive Master’s programme doesn’t have a specific
Bachelor’s programme of the same subject but allows typically different Bachelor’s
degrees as entry requirement. The addition Master’s programme aims more to the
idea of lifelong learning. It requires an industrial experience of at least one year.
Furthermore the duration of the final project (thesis) has been fixed: 6-12 credit
points, i.e. 20%—40% of the workload for a whole semester, have been assigned to
the Bachelor’s project. 15-30 credit points, i.e. 50%—100% of the workload for a
whole semester, have been assigned to the Master’s project.

The quality assurance of the BA/MA programmes is guaranteed by the accred-
itation. The National Accreditation Council (Akkreditierungsrat) is responsible [1]
which has been set up in accordance with the resolution of the Standing Conference
of the Ministers of Education and Cultural Affairs of the federal states (Lénder)
in the Federal Republic of Germany (Kultusministerkonferenz—KMK). As an in-
dependent institution the Akkreditierungsrat is made up of 17 members, who are
representatives of the Léander, higher education institutions, students and profes-
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sional practice. There are six accreditation agencies that carry out the work. These
agencies set up minimum standards for the programmes. A new aspect is that they
require a job statistic of the graduates. The accreditation is limited to 5-8 years.
Of course the universities have to pay to get the Accreditation Council’s Quality
Certificate. At the moment the amount is 12.500. There is no formal or legal dif-
ference in accredited BA/MA programmes for the two different types of universities
in Germany: Fachhochschule (University of Applied Sciences) and Universitét (Uni-
versity). Concerning the sections of the civil service a relation between the new and
old degrees has been fixed: A Bachelor’s degree entitles as the Diplom (FH) degree
for higher while a Master’s degree entitles as the Diplom degree for senior sections
of the civil service. After 2010 no student will start his/her study in the the old
Diplom programme.

Existing dual university system in Germany

Germany has a dual university system [2], 122 Fachhochschulen (University of Ap-
plied Sciences) and 99 Universitdten (University/Technical University). The 14
Technical Universities refer to a special tradition. Germany has nearly 2 million
students. 25% of them study at a Fachhochschule. The main differences between
Fachhochschulen und Universitdten summarize up to:

After 12 years of school (Fachhochschulreife) one can study at a Fachhochschule
(FH). All programmes are designed for 8 semesters and this study time is also
realistic. All the programmes are application oriented. Very good graduates from
a Fachhochschule can take up a PhD study at a Universitdt. At a Fachhochschule
students study in small classrooms of 40 from the very beginning of their study. The
assessment method is cumulative, i.e. every semester in every subject. Lectures and
also exercises are both done by professors, who have a workload of 18 hours per
week. All professors have industrial experience of at least 5 years that is acquired
before they become professor.

The admission to a Universitéit requires 13 years of school (Abitur). The pro-
grammes are designed between 8 and 10 semesters depending on the subject but
the average study time is much higher. The programmes are research oriented. The
Universitéat has the right to deliver the PhD grade. There are huge lecture groups in
the basic subjects. Lectures are given by professors and exercises are given by post-
graduates and by students. In general at a Universitdt you don’t have cumulative
assessments. Professors at a Universitit have a distinguished research qualification.
Their workload is 8 hours per week.

Chances and risks of the new BA /MA system

The chances and risks of the new BA/MA system are different for the two types of
universities. For a Fachhochschule it is difficult to maintain its special profile within
a Bachelor’s programme of 6 semesters. On the other hand a 7 semester Bachelor’s
programme might have a public relations problem. A positive aspect is that Master’s
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programmes are possible and that a Master (FH) doesn’t exist. However the switch
from Diplom programmes of 8 semesters to consecutive BA/MA programmes of
10 semesters requires additional money. So there is a distortion in the competition
between Fachhochschulen and Universitaten. The idea of a Bachelor’s programme
transfers the special profile of Fachhochschulen partly to Universitdten. However the
workload of professors is quite different at these two types of institutions. For the
Universitdten Bachelor’s programmes are possible and they open a chance for weaker
students instead of dropping out university. However, how will universities design
a Bachelor’s programme of 6 semesters that qualifies for a job? The Universitiaten
prefer research oriented Master’s programmes of 4 semesters. Without requiring
extra costs it is possible to switch from a 10 semester Diplom programme to a
consecutive 10 semester BA/MA programme. For the Universitdten a complete
redesign of the existing programmes is necessary because a Bachelor’s degree shall
qualify for a job and a change in the assessment system has to take place.

One common problem exists for the basic subjects like mathematics in engineer-
ing programmes. They will be reduced in the Bachelor’s programmes. But will there
be advanced mathematics in the Master’s programmes? Universities with many stu-
dents have the best chances with the new BA/MA system and also programmes with
many students like computer science are in a good position. A great danger consists
in the probable misuse by politicians because they might further shorten the money
for universities. 50%-80% of students leave universities with a Bachelor’s degree
after 6 or 7 semesters. The switch from contact hours to credit points (workload for
students) could be misused to calculate the staff capacity at a new basis. There are
two currencies: professors are paid in contact hours (18 or 8 per week) and students
are paid in credit points (900 hours personal workload per semester). Will there be
in the future mathematics modules of 5 credit points but with only 1 contact hour
per week? A didactic discussion is completely missing in the Bologna process where
public discussion mainly concentrates on the output, i.e. learning outcome, but the
politicians mean the reduction of government funding.

Switch into practice at TFH Berlin

The Technische Fachhochschule (TFH) Berlin has decided to keep the special pro-
file of a Fachhochschule. This is in awareness of the fact that the 14 Technical
Universities in Germany (Aachen, Berlin, Braunschweig, Clausthal, Chemnitz, Cot-
tbus, Darmstadt, Dresden, Freiberg, Hamburg-Harburg, Ilmenau, Karlsruhe, Kaiser-
slautern and Miinchen) seem to have the opinion that the qualification of an engi-
neering profession can only be achieved after 10 semesters with the Master’s degree
and that a 6 semester Bachelor’s degree would be more or less like a technician.
The Fachhochschulen know that the 8 semester Diplom (FH) qualifies for a job,
especially for an engineering profession. This is achieved by an internship of one
semester, the final Diplom thesis of one semester and the small learning groups of
40 Students from the very beginning of their studies.

So the TFH Berlin prefers the 7 semester Bachelor’s programme. However there
are exceptions in computer science with a 6 semester Bachelor’s programme. There
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will be an internship of 15-25 credits and a final Bachelor’s project of 12 credits.
The time of switch into practice will be individual but before 2010. TFH Berlin
will also offer some Master’s programmes. This is possible without any additional
staff for (6 + 4)-programmes like computer science where 80 students are studying
in the Bachelor’s and 40 are continuing in the Master’s programme. The other
programmes will have to create staff capacity by reducing the contact hours but
keeping the work load for the students. The calculation of staff capacity in the
existing Diplom (FH) programmes is done on the basis that during the 6 theoretical
semesters (except internship and thesis semester) there are about 27 contact hours
per week for a group of 40 students. Instead of reducing the contact hours in the
Bachelor’s programmes it is possible in Berlin to get in some cases more government
funding because the federal state Berlin shifts some capacity from Universitdten to
Fachhochschulen. A third possibility would be the introduction of study fees which
is now only possible for non consecutive continuing Master’s programmes.

At TFH Berlin there exists the tendency to reduce the quality of Mathematics
modules by introducing of BA/MA programmes. One keeps the mathematical con-
tents and the workload for the students but offers less contact hours of students
with professors. This will probably be done although the students come with less
mathematical knowledge from school. The consequence is that the students have to
learn more at home from books and that the professors have to supervise more stu-
dents. The engineering colleagues also discuss the fact of creating combined modules
with mathematics and physics or mathematics and technical mechanics. This idea
inherits the problem of transferring credits to other universities where this special
type of combined module doesn’t exist. The didactic aspect is that mathematics
would then be taught by engineering colleagues only in the special context of their
subject. A third point is that there might be no mathematics at all in engineering
Master’s programmes.

BA /MA—a potential for economizing

At the first glance the Bologna process means a switch from the Diplom degree to a
two tier BA/MA degree. In reality it is means of reducing the government funding.
This is absolute because there will be a shorter study period for the majority of
students. Secondly the university system will be transformed in direction of a private
company. At the moment a new salary system for professors is being introduced in
Germany. The academic self-government is going to be changed. The rivalry between
Fachhochschulen and Universitaten will remain but the competition is distorted. In
addition industry will pay less starting salaries for Bachelor’s graduates but will
probably require the same quality. This process goes in parallel with the General
Agreement on Trade in Services (GATS) that has been signed in 1994 and that opens
an international competition in the area of university and continuing education.
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“Das Alte stiirzt, es dandert sich die Zeit,
Und neues Leben bliht aus den Ruinen”

Friedrich Schiller: Wilhelm Tell (1804)

“The tradition falls, it changes the time,
And new life flowers out of the ruins”

Modern performance in
Altdorf/Switzerland 1998
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Abstract

The Panevezys Institute of Kaunas University of Technology hosts students
of mechanical technology, civil engineering, and electrical engineering. The
level of proficiency required in different mathematical topics differs slightly
for different specialisms. But engineers of all specialisms need mathematical
knowledge for the solution of practical problems and for research in the fields
of mechanics, control, physics etc.

Rapidly developing computer technologies enable us to use mathematical mod-
elling widely in a range of technical areas. So the students should be familiar
with the development of a model and be able to choose a suitable algorithm
and software, and be able to write simple add-ons to that software for solving
the model. This paper discusses the implementation of these aims.

1 Introduction

A different level of mathematical knowledge is necessary for students of different
specialisms. We are analyzing here general aspects of teaching mathematics to stu-
dents from different technical specialisms (engineers to be). Naturally, mathematical
knowledge is needed for an engineer for solving particular problems as well as the-
oretical research closely connected with practice: physics, mechanics, engineering,
control, etc.

Owing to the rapidly expanding applications of mathematical modells and com-
puter technologies in all technical sciences, there is a necessity for a specific character
of teaching mathematics. Requirements of the mathematical knowledge to be met
by a modern engineer are formulated in the SEFI Mathematics Working Group Core
Curriculum [1].

Having a specific mathematical education, an engineer must know how to

e state mathematical problems,
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e construct mathematical models,

e select a proper mathematical method and algorithm for solving a particular
problem,

e implement the selected algorithm by computer (by directly programming or
applying a software package of general or special purpose),

e apply knowledge of pure mathematics (qualitative mathematical investiga-
tions),

e define the adequacy of the mathematical model selected,
e give efficient recommendations based on the mathematical analysis.

Bachelors of civil engineering, mechanical engineering, and electrical engineering,
masters of mechanical engineering as well as bachelors and masters of business and
management specialisms are prepared at the Panevezys Institute of Kaunas Univer-
sity of Technology. Daytime department engineers study mathematics for 3 terms,
and those of the evening department for 2 terms, starting from the first term of the
first year. Informatics is studied in the first and second terms. In the second term of
informatics the application of computer algebra packages is covered weith practical
exercises in MathCad.

The instructor usually has three options for the lecture:

a) to consider only a mathematical topic and to solve problems “by paper and

”

pen;

b) to consider only a mathematical topic and to solve some of the problems “by
computer” prior to having learned how to solve them by “paper and pen”;

c¢) while considering a mathematical topic, to formulate a real life problem, to
develop its mathematical model and to solve it by the first or second method.

The third way is most useful for an engineer, however, it is time consuming and
requires knowledge of mathematical methods. Also, development and research of
mathematical models do not serve as substitutes for normal lectures on mathematics.

2 A Sample Problem

We present here a typical situation that completely reflects the above-mentioned re-
quirements. The model is based on a differential equation (such equations frequently
serve as a mathematical model of real processes).

2.1 Real life problem

Consider a horizontal beam acted upon by vertical loads. Assume that the forces
due to these loads lie in a vertical plane containing the neutral (centroidal) axis of
the beam and that they are such that no part of the beam is stressed beyond its
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A Centroid Centroidal axis

Fig. 1. A cantilever uniform beam

elastic limit. These stresses cause the beam to bend, as indicated in Fig. 1, and the
curve of its neutral (centroidal) axis is called the elastic curve of the stressed beam.
If the beam is made of uniform material satisfying Hooke’s law, and satisfies certain
other conditions related to the shape and properties of materials, it can be shown
that its elastic curve approximately satisfies the differential equation

d?y

EJ =M. (1)

Here the axis = is horizontal along the beam, the axis y is vertical, F is the
modulus of elasticity of the material of the beam, J is the moment of inertia of
the beam perpendicular to its axis with respect to a horizontal line in the cross
section K passing through its centroid, and M is the bending moment in the cross-
section. Since the material of the beam is uniform, F is constant, and if the beam
has a uniform cross-section, J is constant. Fig. 1 represents a cantilever uniform
beam [ = 6m long, fixed at one end (point A) and carries a concentrated load
P = 20000N at point B. Let J = 3-10"*m* and £ = 2.1-10"'Pa. In addition,
some measurements have been made at the points, T; = ¢, ¢ = 3,4, 5 m whose data
are

7(3) = —0.00783,  7(4) = —0.00991,  7(5) = —0.01920.

We have to find the deflection of the beam at each point of the interval and to
estimate the adequacy of the model.

2.2 Construction of the model

The bending moment M at any cross-section may be found by taking the algebraic
sum of the moments of external forces on a part of the beam on one side of the
cross-section about the horizontal line in this cross-section. In search of M, we

79



V. Kleiza and O. Purvinis

consider upward forces giving positive moments and downward forces giving negative
moments (this is the sign convention). In this case (Fig. 1)

M(z) = P(l —x) (2)
and from (1) we get a differential equation for deflection

d?y
Since the beam is fixed at one end A, the elastic curve is horizontal at this end.

Hence, taking the origin on the left end A, we have initial conditions

y(0)=0 and y'(0) = 0. (4)

2.3 Exact solution of the model

Integrating (3) and substituting the conditions (4), we obtain the exact solution

o) = g (1722 )

2.4 Numerical solution of the model

By a numerical solution of a differential equation in x and y, we mean a table of
the values of y opposite to the corresponding values of x for a particular solution
of the equation. Though equation (3) with its initial conditions (4) can be solved
analytically (such a choice is for methodical considerations), we suppose that there
is no analytic solution, because that is a typical situation in real problems. This
remark also applies to equation (1) under consideration, since, if deflections are more
significant, the neutral line is described by the nonlinear equation

_3
dy 2 2
1 — =M
()] -
which cannot be integrated in an analytical way.
To solve the problem, we have chosen the finite difference method (in the interval

[0,1], the grid is chosen as z; = i, i = 1,2,...,6) that reduces the solution of the
linear differential equation (1) to the solution of a system of linear algebraic equations

4’(,L1 — Uy = 0 (6)
Uij—1 — 2’[1,Z + Uij+1 = P(l — IZ)/EJ, for i = 275

d?y
EJ—=
dx?

and an estimate of the accuracy of the resulting solution can be made by various
measures, for example

18
ly —ull = gZIy(Ii)*M- (7)
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Fig. 2. Deflections of the beam: solid curve—analytical solution,
x’s—numerical solution, dmnd’s—experimental results

2.5 Estimation of the model accuracy

Adequacy of the model is most frequently estimated by comparing the experimental
results with the numerical and/or analytical (if the later is possible) solutions, i.e.,
the norms are calculated

5 5

- 1 o _

[7—ull =35> Wi—wl andfor  Jy=7gl=3> |u@@:)-7] (8
=3 1=3

2.6 Numerical results

It is sensible to present the calculation results for a student, illustrated in Fig. 2 and
Table 1, and norms (7), (8) equal to

ly —ul| =3.704-107%,  |[g—ul=8715-10"3, |y —7| =8.504-107°.

Table 1. Analytical and numerical results

T 1 2 3 4 5 6

y(x;) | 0.00090 | 0.00339 | 0.00714 | 0.01185 | 0.01720 | 0.02286
Uj 0.00079 | 0.00317 | 0.00683 | 0.01143 | 0.01667 | 0.02222
y(zi) 0.00783 | 0.00991 | 0.01920

In our opinion, it is impossible to attain the stated aims by merely listening to
the general course of mathematics, though traditional mathematical courses ensure
a student has the main body of mathematical knowledge. In order to attain all the
above targets, cooperation between the lecturers of mathematics and engineering
departments is necessary. This will initiate the appearance of special mathematical
courses, such as modern methods of applied mathematics, special sections of pure
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Fig. 3. The plot of the demand curve

and applied mathematics, etc. We have started to implement this. At the final stage
of teaching of modern applied methods, students should follow special courses from
their specialism in order to master the appropriate methods of applied mathematics
and they should reflect these in their graduation theses.

3 A Problem from Economics

It is essential that engineers understand the fundamentals of economics. The fol-
lowing problem is a useful exercise for them. Demand for a commodity is given in a
table.

Table 2. Price and demand
Price p 15 16 17 18 19 20 21 22 23 24 25
Demand D | 175 | 168 | 150 | 149 | 143 | 130 | 125 | 113 | 115 | 110 | 105

Students are required to find at what price a monopolist can sell a good in order
that his income is highest if it is known that the demand function for this good has
the shape D = exp(ap + b).

For the primary stage of study of the problem a graph of the demand function
is drawn:

The parameters a and b in the given relationship must be found using regression.
A lecturer can allow students to decide for themselves which software package to
use. This makes them recall the mathematical capabilities of packages. Engineers
may make calculations of the parameters of such a relationship using computer al-
gebra packages, while economists may use statistical packages. However, for both
of them one can recommend finding the relationship with Microsoft Ezcel by apply-
ing the least squares method (LSM). Certainly, using Excel to find the regression
equation takes more time, but this demonstrates clearly the essence of LSM and its
universality.

The construction of the model and its study is comprised of the following steps:
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1. Finding the parameters a and b of the regression function D = exp(ap + b) by
applying LSM.

2. Constructing the function I = pD and finding its maxima.
3. Interpretation of the results in terms of economics.

Using Excel, we obtain that D = exp(0.053p 4+ 5.955). We can analyze the
expression I = pD with unknown a and b, however, using the expression with
numerical coefficients, we can draw its graph by computer. This enables us to
make a primary analysis of the income /. In this case, the graph of income shows
that I really has a maximum. However, this also demonstrates the inaccuracy of
graphical methods, because it is impossible to find the maximum point from the
graph accurately enough. Therefore one has to apply mathematical analysis methods
to the function I.

Here we may recommend use of a computer algebra package (it is simpler). In
the lecture-room the students not only do that, but also discuss why it is better to
do so.

The identification of a stationary point of the function I by the package Mathe-
matica comprises only a few lines:

a=-0.053

b=5.9547

i=px*Exp [a*p+b]
deriv=D[i, p]

FindRoot [deriv=0, {p,0}]

The price found is py = 18.8766, and the income is I = 2676.23.

While considering this solution in terms of economics, it is worth explaining why
for p > po the income starts diminishing, i.e., the growth in price does not com-
pensate the decrease in demand. This conclusion mathematically grounds the result
and explains to the students of economics the truths they already know from their
course of economics. Meanwhile, to engineers, this can be presented as a method for
acquiring some knowledge of economics or investigating economic phenomena.
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The problem is completed by stressing all the stages used for problem analysis
and mathematical modeling of a real situation. This allows students to appreciate
the role of mathematics and computer package application as a tool for solving a
problem.

However, not every engineer will have access to an expensive mathematical pack-
age after graduating from the university. For example, it may be cheaper and quicker
for a designer or an economist, working with a general packages (of CAD or Excel
type), to write a supplement to the program rather than to acquire a mathematical
package. This can be a macro collection for the program Fzcel or add-on in some
language for a designing package. To do this requires knowledge of the problem
solution algorithm.

4 Conclusions

1. Applying mathematical modeling in a simplified way to the simulation of a real
situation frequently requires the application of several mathematical methods.
In order to choose the appropriate methods to investigate the model, it is
necessary to hav a knowledge of the capabilities of mathematical and other
packages.

2. Computer applications may be reasonable for a primary investigation of the
given problem before constructing a mathematical model.

3. Students of lower courses may have insufficient knowledge of the matter, there-
fore in the first year the samples of models ought to be carefully chosen. This
obliges a lecturer of mathematics to find out which topics the students have
studied in the lectures of other subjects. In our opinion, it is easier for lectur-
ers to do this at small (branches of) universities, which have the advantage of
closer cooperation between the lecturers of different departments and faculties,
than those at large ones.

4. Accumulation of the necessary mathematical knowledge has to be performed
consistently and in various ways, by using computers from the very first year.
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In the last fifteen years we have frequently encountered the opinion that, thanks to
the new technologies, we need to learn mathematics only to the very basic level.
According to this extreme opinion sufficient understanding of mathematics is such
as to enable one to realize three main steps: to formulate an engineering problem in
mathematical language, to perform suitable commands into a computer (input), and
to read the needed information from the obtained output. Some schools follow such
recommendations, without any critical appraisal, perhaps motivated by the reduced
teaching loads.

When doing just basic mathematics we do not need deep understanding of math-
ematics subject. However, as tasks become more complicated, deeper understanding
is needed. First of all, we must prepare a suitable input, if we wish the computer
to work properly. After the computer’s work is finished, we have to simplify or to
control the obtained results. This last work is extremely important when dealing
with demanding task. The reason is that computer can give a wrong result, even
without any warning. It seems that the most important finding is the fact that
we must control the computer itself. However, to control the computer we need
a fairly good understanding of mathematics. We shall illustrate this assertion with
some instructive examples, which show the vital interplay between mathematics and
computers. The first three examples are relatively simple, but the last one is quite
complicated.

Example 1. Using Mathematica [2] and sequences f(n), ¢(n), f*(n), g(n), and
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~(n), defined recursively as:
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we produce the following table

n 25 30 35 40 45
(f(n))Qn v v ™ ™ ™
(p(n))?" || 3.1400 | 3.1400 | 3.1400 | 3.1402 | 3.1287
RO I I N A i I

o
(9(n)) i 1 1 1 1
(y(n)*" 0.1 0.1 0.1 0.1 | 0.0998
n 50 | 55 | 60 | 65
fe)* | o« | x| 7|
(p(n))*" || 27183 | 1 | 1 | 1
O
(9(n))? % | % | % | 1
(v(n)* 01054 | 1 | 1 | 1

The second, the forth, and the fifth row confirm that the operation of sequentially
extracting square root n—times is the inverse to the operation of n—times squaring.
But how to explain the third and the sixth row, where the rows end with units
instead of the initial number? To do this, we must understand that Mathematica
produced the second, the forth, and the fifth rows using symbolic calculations, while
the other two rows were produced numerically using finite arithmetic. Considering
these two rows we must understand that sequence n +— T converges to 1 increas-
ingly/decreasingly for 0 < < 1 and x > 1, respectively.

Example 2. Searching for the indefinite integral [In(1—z) dz, i.e. searching for real
function f(z) of real variable, defined on interval (—oo, 1), such that f'(z) = In(1—x)
for x < 1, Mathematica gives definitely wrong answer producing the output

/1n(1—z)dz — —z+1In(l —z) —In(—1+ z).

This is so because for real < 1 the function on the right side is not real at all.
What should we do in the case above when we do not know the method of integration
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by parts, but we are familiar with the substitution method in the definite integral?
In this case we can solve the problem. Indeed, because we can directly confirm
Mathematica’s output

Inzdx — z(lnx—1)

on the interval (0, 00), we use substitution 1 — z =t to find

/1n(179:)dx = f/lntdt = (x—1)[In(1 — z) — 1] 4 const.

for x < 1. We see that without well-grounded understanding of mathematics we
have no idea how to proceed in the example discussed above.

Example 3. Dealing with expression!

Blamn) = (1) S e
o |5 () O
we use substitutions .
dla,n) == T2 = 23 —1, (3.2)
o(t) = (1 + )t (3.3)

and

Dla,t) i= V1— 2 - [p(t) o(~)]"* - exp (ﬁ) , (3.4)

to obtain compact expression

(3.5)

B(a,m,n) = <a> D(a,x)

m /) D(a,y)’

where = d(a,m), y = d(a,n). We would like to examine if (3.1) is really equivalent
to (3.5), i.e. we would like to check if we did not make some error during our
calculations. Hence, one dealing with difference

A(a,m,n) = <“) Dle,x) B(a,m,n),

m ) D(a,y)
using substitutions (3.2)—(3.4). Unfortunately, using command FullSimplify for
symbolic simplification we do not succeed to obtain A(a,m,n) = 0. After this

disappointment we check equality A(a,m,n) = 0 for some special values of a, m
and n. We are disappointed again with the result |A(1007,10,170n)| > 5.8 x 1079,
obtained using the default precision of numerical calculations. Fortunately, |A| is

Lwhich is close to (Z) for integers m and n, such that 2 <m <n<a
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relatively small as regards | B|. Indeed, using Mathematica [2], we directly estimate
B(1007,10,170) > 5.8 x 10°2. Now, checking the relative difference as

A
AQ00m, 10,170)| 1y 4 913 o,
B(1007, 10, 170)

we are quite satisfied. Moreover, increasing the precision of numerical calculations,
using command Block[$MaxExtraPrecision = 200, A(1007,10,170)], we obtain
the output

|A(1007,10,170)| — 0. x 1072

which indicates that A(1007,10,170) should be equal to 0. Fortunately, results
similar to the one above are obtained also using some other special values of a, m
and n. Consequently, we conclude that expressions (3.1) and (3.5) are equivalent
using substitutions (3.2)—(3.4).

Example 4. Let us examine the series > 7o (sin vVk)/k and S5 (sin V&) /VE.
We are interested whether they converge, and if they do, what are the numer-
ical values of their sums. Although Mathematica [2] can symbolically find that
Y ope(sink)/k = (r —1)/2, it does not succeed in answering our questions in this
way. Therefore we try to put our questions differently—numerically. Asking for the
numerical values of the infinite sums above, using command NSum, we obtain the
following output

NSum[Sin[VE]/k,{k,1,00}] — 15307 (4.1)
NSum [Sin[Vk]/VEk, {k: 0o} — —0.270500. (4.2)

However, we are somewhat suspicious due to our previous experiences. Therefore,
using Mathematica [2], we compute the lists of partial sums for both series. Figures
1 and 2 shows the sequence of partial sums of these series.

1. 85—Sn A
1. 8!

/\ A A
1.7 \/ \/ \/

1. 65}
'\i

500 1000 1500 2000

1. 55¢

Figure 1: Convergence of partial sums s, = > p_, (sin Vk)/k.
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Figure 2: Convergence of partial sums s, = S r_, (sin V&) /Vk.

The first figure suggests convergence of the first series, however the second figure
raises some doubt about the convergence of the second series. In this uncertain
situation we need the help of mathematics. Fortunately, we have at our disposal
Theorem 2 [1, p. 119], which we quote here as

THEOREM. If f € CP[1,00), floo ‘f(p)(z)| dz converges, and finite limits \g :=
}Ligl\] f(n) and A = lnlg f®)(n) exist for all positive integers k < p — 1, then

n— oo
n—oo

(i) The series 3 p, f(k) converges. <= The sequence n+ [ f(z)dx con-
verges.

(ii) If the series Y o, f(k) converges to s, then A\g =0 and

s=v+ 1732%/ f(z)dx,

~v being Euler’s constant of a function f, and there holds the equality

1

s= S F) + [ 1@+ 4(00) = oym)] + 8y ()
k=1 m

where

72}0 Bj ri-n fzp Bjy.
op(m) = : (m), op(o0) = 1 J=1
! = J

B; = B;(0) being Bernoulli coefficients, Bj(x) Bernoulli polynomials, By =

-1 32:%7B3:B5:B7:0,B4:B8:_%,Bﬁzé,...,a,nd

Eo [ _
Gl < 52 [ 110 @) oy = B, (@)

— _ 1 _ 1 1 _ 1 1
s Ha = P8 = 35, M6 = 335 M3 < 35, U5 = 35, and p7 < 35.

=

with p; = %, o =

Question 1. Does the series > - Si“k‘/E converge?
This question can actually be solved by putting p = 1 in the Theorem above. Here
we are dealing with function f: [1,00) — R, f(x) = #, having A\g = lim f(n) =
n—oo

90



Understanding of Mathematics is Prerequisite

0 and the integral convergent. Indeed, substituting z = ¢2, we reduce our integral
to Diriclet’s one [3]:

0O - © gint 1 . ¢
/ Msz/ Sidt:wﬂ/ St (4.3)
1 x 1t o ¢
where the last integral does not cause difficulties. Because

VT cos\/T — 2sin/x (4.4)

222 ’

flz) =

integral [~ |f’(z) dz converges. Hence, from the preceding Theorem it follows that
the series > r, (sin v/k)/k converges too.

Question 2. What is the sum s of the series Y -, %7

We shall use the above Theorem (ii), setting f(x) = SVET and p = 3. Because

Ao = lim f(n) = 0, and according to (4.4), also A\; = lim f'(n) = 0, we have

o3(00) = 0. Consequently we obtain

s = ; F(k) + /m f(z)dz + %m) _ % sy, ws)
where 1 )
133(m)| < 1—20/ ()] de wo)

Using the substitution x = ¢? first and then the method of integration by parts, we
transform the integral as

oo oo : t
/ f(x)dsz/ ek
m vm t
~ 2cosy/m N 2siny/m  4cosy/m  12siny/m N

N T S SO pm), (@)
where the remainder
p(m) = —12 /00 (sint) 4 (t*) dt
Jm dt

is estimated as -

lp(m)| < 12 /m ‘% ()| at = % : (4.8)

Considering (4.4) we estimate
|f" ()] < %x_E’/Q + g 73+ 3—; 27?67,
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for > 0. Thus, due to (4.6), there follow relations

1 /1 9 33
|03(m)| < 20 ) (§ a2 4 3 7%+ 5 7?4 633_4) dx
1 1 9 33 2
= — — . 4.9
120 <12m\/m T lemz t 20m?2y/m * m3) (4.9)

Consequently, concerning (4.5), (4.4) and (4.7), we conclude with expression

s =S(m) + A(m), (4.10)
where
m—1 . . .
sinvk 2cosy/m Hsin/m 97 cos/m 143 siny/m
= — — 4.11
S(m) ; k + vm + 2m 24m+/m 12m?2 ( )

and where, due to (4.8) and (4.9), there hold the estimates

[A(m)| = |p(m) + 5(m)|
< 1 " 7683 " 11 " 1
~ 1440 my/m  640m2  800m2y/m = 60m3

(4.12)

for integer m > 1.

Using Mathematica [2] we find S(170) = 1.71555. .. and |A(170)] < 4.2 x 1074,
due to formula (4.11) and the estimate (4.12). Consequently we obtain for the
sum s of our series the following estimate: 1.71513 = 1.71555 — 0.00042 < s <
1.71556 + 0.00042 = 1.71598. Hence, s = 1.715..., i.e. the sum s is evaluated to
three decimal places accurately with the absolute value of relative error less than
0.06%. In this way we again confirmed that the computer result was wrong.

In connection with this computation we wish to emphasize that partial sum

S170 = ,161)1 % = 1.5767 ... poorly approximates s; the absolute value of relative

error of this approximation is greater than 8%. Anyhow, it is evident that the
computation of the sum s using only computer is not sufficient.

Question 3. Does the series > -, Sir\’[‘k/é really diverge?

To answer this question we shall use our Theorem above setting p = 2 for inte-

grand f: [1,00) = R, f(z) = %, which has the derivatives

flz) = SBVT _sinve (4.13)

2x 23/2

and

v, siny/r 3cosy/x 3sinyx
f(x) = - 152 T 12 1 (4.14)

Thus lim f(n) = lim f’(n) = 0 and, by (4.13), integral [, [f(*)(z)|dz converges.

Hence, we have only to examine the sequence n +— fln f(z)de.
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Substituting x = t? we obtain equalities

/ Smﬁdm:/ sin || 2tdt:2/ SintdtZQ(COSm_COS\/ﬁ) (4.15)
m VT v It v

for m,n € N.

Therefore, the sequence n +— floo f(z)dz = 2(cos1 — cos \/n) diverges due to the
Lemma? below. According to the preceding Theorem we conclude that the series
S0 (sinvk)/VE diverges as well.

LEMMA. FEvery point of the closed interval [—1,1] is a limit point of the sequences
n+— cosn and n +— sinn.

Remark. We have proved divergence of the series Y o, (sin v'k)/Vk, however
we do not know the numerical behavior of its partial sums. Fortunately, even this
question can be answered adequately. Indeed, by [1, p. 118], items (23a) and (23b),
we have

n

> 10) = [ F@)de+ 5 17m)+ Fo)]+ 151 () = Fm)] + paomm) - (436)

k=m

where the remainder ps is estimated as

1 n
patm ] < 135+ [ 1" @) d. (4.17)
Using these relations we obtain for the nth partial sum s(n) = Y ;_, Si‘:f‘k/g the
formula
B siny/n  cosy/n  siny/n
s(n) = 1.5138 — 2cos/n + NG + P vy +4d(n),
where

0<dé(n)<1.6x10"*

for n > 30. However,
s(n) = 3(n)— 0.0238 + do(n),
where 0 < dp(n) < 0.05 for every positive integer n and

siny/z = cosy/x sinyz

x
T + 24x 24x3/2 "

2V

Figure 3 shows the graph of sequence s(n) as well as the graph of function §(x) of
continuous variable x.

S(x) :=1.5138 — 2cos/x +

2well known in the theory of dynamic systems
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Figure 3: Sequence s(n) and its continuous approximation 5(x).

Conclusion. We have given, in our opinion, clear example of the vital interplay
between mathematics and computers. We have illustrated the fundamental truth
that mathematics and computers do not exclude each other but they complement
one another. Moreover, we have demonstrated, using the examples above, that for
solving non-elementary tasks a good hardware alone is not sufficient. In addition a
solid knowledge of mathematics is required.
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Abstract

For many years the mathematics community in Higher Education in the United
Kingdom has been expressing concern about the decreasing level of mathemat-
ical competence of students on entry to university. In this paper we outline
some objective evidence of this decline, based on results of a diagnostic test
used in the first week of students’ university career. We discuss one mea-
sure several universities have introduced to address the problems caused by
the change in students’ entry competences, namely mathematics support cen-
tres. Finally, we outline two projects mathcentre and mathtutor providing
resources that all universities may use to help students make the transition
from school to university mathematics.

Introduction

For several years the higher education mathematics community in England has been
raising concerns about the competence of new undergraduates in disciplines with a
high mathematical content. A series of reports, published by various professional
bodies [1-4], has added credibility to these concerns. In 2003 the Government set
up a national inquiry under the chairmanship of Prof Adrian Smith. The report of
this inquiry, ‘Making Mathematics Count’ [5], was published earlier this year.

‘Making Mathematics Count’ contains a series of recommendations about mathe-
matics education at a range of levels and urges university mathematics departments
to play more active and co-ordinated roles in promoting mathematics in schools.
The report also recommends the establishment of a National Centre for Excellence
in Mathematics Teaching to co-ordinate the activities of nine Regional Mathematics
Centres. In order for these to be set up and play the role Prof Smith envisages
a substantial sum of money (in excess of £150 million) is required. Up to now
the Government has not made an official response to the report. However, Charles
Clarke, the Minister for Education and Skills, did say in a presentation to the Heads
of Departments of Mathematical Sciences conference [6]:

‘We profoundly welcome the report of Professor Adrian Smith, we are
delighted that he has published his report so clearly and we are very keen
to move to implement the recommendations he has set out.’
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Even if the Government does respond positively to the recommendations of the
Smith report it will be several years before the changes proposed will have a major
effect on the mathematical competences of new undergraduates. In the meantime
higher education must put in place strategies to support students at the transition
from school to university mathematics.

Changes During the 1990s

Diagnostic testing in mathematics for new undergraduates was introduced on a large
scale at Coventry University in 1991. A 50 question multiple choice test covering
arithmetic, algebra, lines and curves, trigonometry and basic calculus is used. The
test has remained unchanged and so data from student attempts at the test since
1991 give an objective measure of how entry competences have changed amongst
students with the same entry qualifications. In this paper we present a short sum-
mary of the most important changes observed over the period 1991 to 2001. A fuller
discussion can be found elsewhere [7].

Scores achieved in the diagnostic test dropped considerably over this period for
students with the same mathematics entry qualification. In 1991 the average score
of those students with A level mathematics grade D was 37.3 (out of 50). By 2001
this had fallen to 29.1. The topics where there was the greatest decline in com-
petency were primarily in algebra—the percentage of the cohort correctly answers
questions relating to factorising quadratic expressions, solving quadratic equations
and handling fractional indices fell by over 35 points.

A level mathematics has pass grades A to E and two fail grades N (for near miss)
and U for unclassified. In 1991 the average score in the diagnostic test of students
with grade N was 34.4. In 2001 the average score of students with grade B was 33.8.

Mathematics Support Centres

The changes discussed in the last section are well-known to the higher education
mathematics community. One strategy that has been adopted in an attempt to
reduce the problems caused by this decline in entry competences is the establishment
of mathematics support centres [8,9]. A survey carried out in 2001 [10] indicated that
almost 50% of UK universities had some kind of mathematics support provision and
since that time other universities have started to offer this type of facility. Although
there is variation in detail, most mathematics support centres offer similar services.
They provide support in addition to that given in the student’s normal diet of
lectures and tutorials. This support includes access to a range of resources; the
most popular of which are short, focused leaflets. In addition there is usually the
opportunity to receive one-to-one help from a tutor.

Mathematics support centres at most universities are offering assistance in the
same areas, usually algebraic manipulation, trigonometry and calculus. This com-
monality of topics of concern led to a project to establish a virtual support centre
offering high quality resources to both students and staff. Funding was secured
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from the Learning and Teaching Support Network (LTSN) and mathcentre [11] was
established.

In parallel to this development, a complementary project was successfully sub-
mitted to HEFCE’s fourth round of bidding to the Fund for the Development of
Teaching and Learning (FDTL). The aim of this project was to develop electronic
materials to support students at the school/university interface. The central fo-
cus of these materials is a collection of e-tutorials covering important mathematical
principles and techniques. Theses resources are to be delivered on CD-ROM and
DVD-ROM under the title of mathtutor.

Mathcentre and Mathtutor

Although begun as two separate projects, mathcentre and mathtutor have now be-
come inextricably linked. A common approach to resource development has been
adopted. For mathtutor, the e-tutorials are the central resource. These are videos
of high quality teachers presenting detailed coverage of a range of mathematical
topics. Supporting these videos are a range of other materials including diagnostic
tests, e-texts (suitable for printing) that give parallel coverage (what might be called
pseudo-transcripts) to the videos, summary leaflets and interactive exercises.

Please choose from the following Subject arcas:

Arithmetic
Algebra

Duadratic equations

Functions and graphs Tapic List

GEDm ety

Trigonometey

History Dingnostic Test | Summary Text Exercises
S T

Figure 1: mathtutor displaying an e-tutorial
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Figure 1 shows the mathtutor interface with the e-tutorial on quadratic equations
running. The other resources can be accessed using the buttons underneath the
screen.

The five question diagnostic tests align with the videos in such a way that if
for example a student answers the first three questions correctly but the last two
incorrectly they can jump straight to the appropriate point of the video, automat-
ically skipping over the presentation of those parts of the topic in which they have
demonstrated competence.

The videos are typically around 30 minutes long. It was originally envisaged that
these materials would not be provided by the mathcentre web-site because of the
quality that could be expected. However recent developments in video-streaming
have now made it possible for the videos to be delivered over the web and, with a
broadband connection, the quality is good.

The mathcentre web-site is designed for both students and staff. Figure 2 shows
the entry point to the student section. As a student you can specify the discipline
you are studying and then you will be offered resources appropriate to that discipline.
There is a global search facility so that if the topic you are interested in is not on
the menu in your discipline you can still find materials on that topic.

The staff section of the web-site contains bundles of resources to save staff from

having to download them individually and also other resources such as good practice
guides, LTSN occasional reports and the MathsTEAM booklets [12-14].

4} mathematics suppodt for students - malhoenbie - Miciosoft Intemnet Explores

| Ble Edi Miew Favoites Tocs Hep

Yoo @ B @ @ B g B s
Seack Favaites

| Back Forvward Siop  Fehesh  Home History Madl Prirt et Diiscies

| o=t {257 hitp: /fvavae mathcenize ac.uk shaderts ghp?PHPSESSID 7 7700205 242519 23 40e Lot bebel =] P | Lk

s

- _—
' Students gmnathcentr

Students | Staff | Search | News | Links | 35“”' | Contact

Welcome to mathcentre

We have four kinds of rescurces which will belp you:

= Quick referance |eaflets which provide sasily accessible support on key opics.

-

Teach—yourself booklets with & mors in—depth reatm ent of impotant topics and which
include thieary, worked axam ples and axercises.

-

Practice and revision booklets which contain hundreds of practice exarcises with answars.,

on-line ewercises, which allow you to self-test or practice basic rechnigues.

raquired).
Can't see your subject or topic listed? although some of our resources are gearad towards
I ramicilar siihiser araas o ma find eaams rhar are arill nsefil oo To helnowoa fioed the f
i

L [ [y kel

Figure 2: The student section of the mathcentre web-site
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Evaluation and the Future

The projects mathcentre and mathtutor are both on-going. The first topic to be
covered was algebra and a pilot disk was produced in 2003. A systematic evaluation
of this disk was undertaken and the findings were very positive. Several hundred
users of the disk were asked to complete a short questionnaire rating the differ-
ent resources on the disk and giving some overall opinions. The results from this
questionnaire are shown in Tables 1 and 2 below.

Very useful | Useful | OK | Not Useful
Diagnostic 23 40 26 11
e-tutorial 28 36 24 12
Text 22 37 33 8
Exercises 41 33 20 6

Table 1: Opinions of the various resources on the mathtutor disk

Agree | Disagree
I would like to see more 85 15
I like this sort of thing 81 19
I found the disk easy to navigate 92 8

Table 2: Overall opinions of the mathtutor disk

By far the most valued resource on the disk is the interactive exercises—this
echoes findings about the web-site for the Mathematics Support Centre at Coventry
University [15], where the most used resource is the on-line tests. The percent-
age of respondents indicating that they found any of the resources not useful was
encouragingly low.

Based on the feedback received from this evaluation small modifications are being
made to interface. The schedule is now to release in September 2004 a revised algebra
disk and further disks covering co-ordinate geometry, trigonometry, differentiation
and integration. At a later date, disks covering arithmetic, functions, sequences and
series, vectors and introductory differential equations will be produced.

A formal evaluation of the mathcentre web-site has not yet been undertaken.
Evidence of the value of the site is the number of hits it receives (over 500 per day and
increasing) and the unsolicited emails sent praising the site and the resources it offers.
Up to now publicity for the site has been relatively low key. It is intended to advertise
mathcentre much more actively with new students in September/October 2004 and
it is expected that this will lead to even higher usage of the site. The number of
resources available on the mathcentre site will also increase as more resources are
prepared for the mathtutor project. In addition, the number of discipline categories
by which students can identify themselves to the web-site will also be increased as
more, appropriate resources (for example, for nursing students) are made available.
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Conclusion

Both mathcentre and mathtutor have already proved their worth as support re-
sources for students at the school/university interface. The volume of resources
available will increase significantly in the near future thereby greatly increasing the
value of these two projects.
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Abstract

The paper points the concept of the elasticity of a function. Applications
in decision making in economy are presented and impacts on instructing of
engineering mathematics are discussed.

1 Elasticity

Motivation

When investigating the dynamics of processes, current courses of engineering math-
ematics offer a standard tool—the notion of a derivative. In teaching calculus of
functions as a part of engineering mathematics, the concept of a derivative of a
function plays a key role. In practise, the concept is fully formalized, mathemat-
ically “treated” and also interpreted. The interpretation (in fact substituing the
motivation-description of dynamics) has usually no priority (sometimes due to lack
of time), some work is left to the related engineering disciplines. In this approach,
concentrating only to a derivative, important aspects of the character of dynam-
ics may be lost. Modelling of dynamics means to “summarize” the way in which
changes in one variable affect some other variable. If the nature of the affect (or the
response) is the rate of change, then the concept of a derivative fits and a deriva-
tive of a function y = f(z) is employed as a measure of the instantaneous (rate of)
change of y with respect to x, or equivalently, it measures the approximate change
iny (= f(x)) as a response to a unit change in z, i.e. f'(z) ~ f(z+1)— f(z). But in
a number of real situations, the concept of a derivative is not (directly) convenient
to describe the character of responsiveness under consideration. Such situation is
typical when modelling economic processes. For example, an economist might be
interested to measure how the change in the price of a product affects the quan-
tity demanded by the market. One problem that arises in the construction of such
summary measures is that quite often variables x and y are not measured in the
same units. For example, the quantity of patatoes is measured in kilos, the price
of patatoes (per kilo) is measured in euros. We might then speak of an increase of
10 cents per kilo in the price of patatoes, leading to a fall of 2000 kilos of patatoes
purchases. Similarly, we could speak of a fall in the price of apples by 10 cents per
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dozen, leading to an increase in apple purchases of 1500 dozen. Now the question is
whether patatoes are more or less responsive to price changes than are apples. The
problem exists because the goods are measured in different units. To answer this
question, economists (firstly Cournot in 1838, see Cournot (1897)) have developed
the concept of elasticity. While a derivative is based on (absolute) changes in z or y
respectively, elasticity is based on proportional changes in x or y respectively.

Elasticity of a function

For a function y = f(z) denote by Az the change in z. If z changes from z to

(x4 Ax), the proportional change in z is Az/x and the proportional change
inyis

Ay _ f(e+02) - f(a)

y f(=) '

Then the average (rate of) proportional change in y per unit proportional
change in z is (Ay/y)/(Az/x), i.e.

(1.1)

Ay
v _ v flet+Ar) - f(r)
é =0 Ay . (1.2)
The elasticity of the function y = f(z) is the function E¢(z) given by
o @A) f@) _ @, wdy
Erlw) = Aligo flx) Az -~ f(x) i) = ydz’ (13)

provided that the limit exists. For a fixed 2 = x¢ the number E¢(z) is said to be
the elasticity of f(x) at xo.

With a view to (1.2) the elasticity of the function y = f(z) is the instantaneous
(rate of) proportional change in y with respect to proportional change
in z, or equivalently it gives the approximate proportional change in y as a
response to a unit proportional change in x. Since

dlogy) _ 1, . ['@)

the formula (1.3) may be expressed in the form

dlogy) _ = dy

Erlw) = d(logz) ydx’

(1.4)

The important property of the elasticity is that it is a number independent of the
units in which the variables are measured. It is a consequence of the fact, that the
elasticity is defined in terms of proportional changes. It may be simply verified—if
z' = rx, y' = sy are the new measures of x and y respectively, then

o' dy’  rad(sy)  rxsdy xdy
y' da’

syd(rz)  syrdz  yda’
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i.e. the elasticity (see (1.4)) is unchanged.
There is one more useful (sometimes initiating the elasticity) verbal transcription
of the elasticity, namely in terms of percentages. It holds

A
Az% = =X 100,
i

and due to (1.2) we get
 Ay%
- Ax%

“[ef< e

and hence from (1.3) it follows, that the elasticity Ey(z) measures the instantaneous
rate of percent change in y with respect to percent change in x, or equivalently it
shows the approximate percent change in y as a response to a unit percent change
in x.

Since the elasticity is based on the derivative, the basic rules for the evaluation of
elasticities may be simply derived (see Allen (1968) among others). We will not need
them in the sequel. Notice that unlike the derivative, the linear function y = ax +b
has not constant elasticity, its elasticity is —%& On the other hand, the power

axr+b*
function y = az® (« > 0) has constant elasticity a.

2 Elasticity in economics

The concept of the elasticity plays a crucial role in analyses and decision making in
economics. We will present some straightforward and convincing examples.

The elaticity of demand

The market demand for a product depends on many factors—the price, the average
income, the prices of alternative goods, the expectation, the taste etc. In a sim-
plified, so called one-factor model, suppose that the quantity purchased Q@ depends
only on the price P. Changes in the price P will lead to changes in the quantity
purchased (). This may be represented, under certain “normal conditions” by the
decreasing function @ = D(P) (or its inverse) which is reffered to as a demand
function. Tts elasticity will measure the response (or the sensitivity) in @ to change
in P. Applying (1.3) we get (inserting the sign minus to reach the positivity of the
result)

PdqQ P
where Q = D(P). Note (as given above), that Ep(P) is independent of both price
and quantity units. Now we will demonstrate, how the elasticity directly affects
decision making in economics. The seller may change the price to influence the
quantity purchased @ in order to maximize total revenue T R, which is given by

Q' (2.1)

TR=P-Q=TR(Q), (2.2)
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where P = D(Q) is a demand function (in inverse form). Now, some mathematics
is needed to get criteria for decision making. We will examine the derivative TR’
of TR, which is reffered to as the marginal revenue MR, i.e.

dT'R

MR = MR(Q) =TR' = R

It holds (see 2.2)

MR=TR = (D(Q)-Q) =Q -D(Q)+Q-D'(Q)=D(Q)+Q-D'(Q) =

rro-fh-r (1+358) -7 (12l )

Q dp
Using (2.1) we obtain

MR:P-(l—#(P)). (2.3)

Now, we will analyze M R with respect to the values of Ep(P) (viewing (2.3)):

1° If Ep(P) > 1, then MR > 0 and hence TR increases, i.e. if ) increases, then
TR increases. But the increase in () is connected with the decrease in P. From it
we deduce:

Conclusion 1. If Ep(P) > 1, then a small decrease in price results in an increase
in total revenue and a small increase in price results in an decrease in total revenue.
This case is in economy reffered to as elastic demand.

Then the following decision procedure is justified :
Initial situation: Ep(Py) > 1 for some price Py, i.e. demand is elastic at P
Task: to increase total revenue TR
FEconomic decision: reasonably small decrease in price.

20 If Ep(P) < 1, then MR < 0 and hence TR decreases, i.e. if @) increases, then
TR decreases and consequently if () decreases, then T'R increases. Analogous to
the above case the decrease in @ is connected with the increase in P. From it we
deduce:

Conclusion 2. If Ep(P) < 1, then a small increase in price results in an increase
in total revenue and a small decrease in price results in a decrease in total revenue.
This case is in economy reffered to as inelastic demand.

Then the following decision procedure is justified:
Initial situation: Ep(P0) < 1 for some price Py, i.e. demand is inelastic at Py
Task: to increase total revenue TR
FEconomic decision: reasonably small increase in price.

The remaining special case Ep(P) = 1 signals a maximum value of total revenue.

There is one practical question concerning elasticity of demand. If the demand func-
tion is known from empirical investigations, then not much complicated calculation
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is needed because the approximation functions are mostly of polynomial type. But
the bulk of initial situations to start decision procedure is based on intuitive engi-
neering reasoning. To state whether at a given price (or range of price) the demand
is elastic or inelastic, economic experts rely on their experience and the character
of a commodity with a view to its sensitivity to price changes. While for instance
the demand for medical services, public transport, basic foods is typically inelastic,
the demand for luxury goods or goods with many substitutes is typically elastic. To
make a qualified economic decision the knowledge of the above mentioned theoretical
arguments is claimed.

The elasticity of total cost

Extremely usefull application of the elasticity concept is in the analysis of the cost
problem. A total cost function is of the form T'C = TC(Q), where @ is an output
produced by the firm. The elasticity of total cost is given (applying (1.4)) by

Q dTC

Erc(Q) = TC a0

(2.4)

where ‘ZT—C is reffered to as a marginal cost, denoted by M C', and % an average

cost, denoted by AC. Obviously it holds

MC

Erc(Q) = I

(2.5)
From (2.4), (2.5) it follows:

1° If Erc(Q) < 1, then a small proportional increase in output @ is obtained at
a less than proportional increase in total cost, average cost is greater than marginal
cost and average cost decreases as output increases. This case is in economy reffered
to as increasing returns.

20 If Erc(Q) > 1, then the situation is exactly the reverse of that when Erc(Q) <
1. This case is in economy reffered to as decreasing returns.

Now, for the cost analysis, economists state two basic the normal case of cost
conditions (A), (B) (Allen (1968)):

(A) Total cost increases continuously from positive value (fixed cost) as output
increases from zero.

(B) The elasticity of total cost increases continuously from values less than 1 at
small outputs to values greater than 1 at large outputs. In other words, returns
become increasingly economically unfavourable as output increases.

From the above assumptions and conditions (A), (B) it follows, that there exists an
output @ = Qg such that Ep¢(Q) = 1 and returns cease to be increasing and be-
come decreasing. Further, average cost AC' decreases with increasing output at first,
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reaches a minimum value at @)y and then increases as output increases. Marginal
cost M C'is less than average cost AC for outputs less than ()¢ and greater than aver-
age cost AC for outputs greater than (Qg. Now, using standard calculus tools, simple
mathematical models of the total cost function satisfying the normal case of cost
conditions may be derived. The most convenient function is the cubic polynomial

TC =TC(Q) = aQ® — bQ? + cQ + d,

where a, b, ¢, d are positive constants with b2 < 3ac.

References

[1] Allen, R. S.D. (1968): Mathematical Analysis for Economists. St.Martin’s Press,
Inc., New York.

[2] Cournot, A. (1897): Researchers into the Mathematical Principles of the Theory
of Wealth. Macmillan, New York(translated by N.Bacon).

[3] Nicholson, W. (1998): Microeconomic Theory. Harcourt College Publ., Orlando.

106



A Sense of Proportions in Engineering

Mathematics
Peter Mogensen

Karlstad University
Department of Mathematics
SE-651 88 KARLSTAD

e-mail: peter.mogensen@kau.se
www.ingvet.kau.se/ mogens/

Mathematics courses for engineering students in Karlstad traditionally start by re-
peating what the students are supposed to have studied at school. For the well
prepared student this is a waste of time.

During spring 2004, I have tried a different introduction, starting with

(i) topics, new to the students,
(ii) familiar topics, but viewed from a new perspective.

The new topics were from linear algebra; vectors, lines and planes in three dimen-
sions, matrices, and systems of linear equations. Here we begin from a basic level
and, since these are new topics, they require no repetition of material previously
studied by the students. I shall say nothing further about these topics here.
Instead, I will focus upon alternative ways of viewing familiar concepts. The
issues I intend to discuss are fractions, proportionality, and exponential growth.

1 Background
In [1], Wallin quotes de Bock et. al. [2] who, in their turn, quote Freudenthal [3]:

The insight that volume is proportional to the cube of length, and that
area is proportional to the square of length, is one of the most funda-
mental insights of all mathematics.

(The quote is not verbatim as I have been unable to find the exact phrasing.)
[2] describes a study of 120 pupils in grade seven (around 14 years of age) given
two types of problems. Examples of the different types were (free translation):

A. Farmer A needs 4 days to dig a ditch round his square field with side 100 m.
How long would it take him to dig a ditch around another square field, with
side 300 m?
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B. Farmer B needs 8 hours to spread fertilizer over his square field with side
200 m. How long would it take him to spread it over another square field, with
side 600 m?

It appeared that type A was correctly solved by around 90-95% of the pupils and
type B by around 5% of the pupils. The result is interesting, if not very surprising.
We might expect better from students beginning their engineering studies. However,
I frequently encounter errors from engineering students, based on the misconception
that “everything is linear”. When designing the new course, it seemed reasonable
to confront the students with various examples of non-linear models.

2 Highlighted topics

2.1 The first problem

Example 1 below was given to the students as a task to be solved at home:

Ex. 1. 15 men can build a wall 33 m long, 1% m wide and 3% m high, in three
weeks if they work 9 hours a day. What is the time required for 18 men to build a
wall 27 m long, 1% m wide and 2% m high, if they work 10 hours a day?

I discovered that most students started calculating “the time required for one
man to build 1 cubic metre of wall”. I presented another solution, based on the idea
that the time needed, say t, would be proportional to some of the quantities, and
inversely proportional to some of the others. This lead to the following equation

t 15-27-12.24.9 12
3= 15.33. 1; 3 9. 0 Cancelling gives t = - weeks (12 days?).

Obviously, one might discuss whether the model is realistic. Be that as it may, I find
this a useful way of thinking, and presented some material to develop the theme.

2.2 Fractions

Given a fraction with common factors in numerator and denominator most students
are likely to start looking for the common factors to be cancelled by division, e.g.

21 21/7 3
28  28/7 4’
Instead, I have suggested factorization:

21 3.7 3
28 4.7 4
The point is that one need not get stuck if the common factor is hard to see, e.g.
74237
111 3-37
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It is also simpler for cases when you are multiplying fractions, like
48 63 80 6-8-7-9-8-10
49 64 8 7-7-8-8-9-9

and it would certainly be preferable in most algebraic situations, like

21 Nz -1 1
z2 — = (= ;L(x)(_xl) ) = z;L (assuming = # 0, 1).

X

2.3 Proportionality
Consider the following problem:

Ex. 2. 210 g of cheese cost 12 shilling. What is the price for 560 g of the same
cheese?

Comment: In my experience, most students start calculating the price for 1 kg and
multiply by 0.56. However, this is a detour, as we are not required to compute the
constant price per unit weight. Moreover, this procedure would include a rounding-
off error.

Instead, the model “price over price equals weight over weight” is advocated, i.e.

p 560
12 210°
12-10-7-8
:710.3'7 etc.

The issue about an un-called-for constant is emphasized in the next example:

Ex. 3. In certain conditions, when the brakes are applied to travelling a vehicle
at 40 km/h, it will come to a halt after 48 meters. What is the distance required if
the vehicle is travelling at 30 km/h when the brakes are applied? (Assume constant
acceleration.)

Comment: We might compute the acceleration (= —1.286 m/s), but this is a te-
dious solution, involving different units for time and other complications. If instead,
we use the fact, imposed on us when we study for a driving license, that the distance
in question is proportional to the square of the speed, we get:

s (30Y
48 \40) ’

Note that the answer remains the same if we change 40 and 30 km/h to 4 and 3
speed units respectively, whereas the acceleration constant will change.

which is easier to solve.

Ex. 4. An atlas covering Ruritania at a scale 1 : 300000 has 36 pages. How
many pages would be required for a Ruritanian atlas of equal dimensions at a scale
1:4000007
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Comment: To determine a constant of some sort here turns out to be awkward, as
neither shape or real area of the country nor the length or width of the atlas are
known, so the simplest solution is to use that area scale is proportional to squared
length scale.

A similar procedure is useful in the next example:
Ex. 5. Consider the function

cplInt
f(t):W’

where 1 is a constant, ¢ = 1.27, A = 0.823 and ¢ = 6.31 - 10~7. Experiments have
shown that f(2048) = 1.65. Determine f(1024).

Comment: Most students, equipped with calculators, seem to find this task pretty
challenging, as the constant 1 has two possible values, none of which is trivial to
find. With or without technical aid, the idea that

F0020) _ Seie e ( lling into £(1024) = 1.65 10)
= cancellimng imto = 1. ).
F(2048) ~ ciTnZois & 11

seems a surprisingly new one to the students.

2.4 Exponential growth

The general procedure in cases of exponential growth is to use the formula

y(t) = y(0) e, (1)
or alternatively,
y(t) = y(0)10™. (1)

But, if we know, say, that a population increases by 70% in thirteen years, it is easier
to define a time-unit of 13 years, and write

2o =170, (2)

where z is the number of thirteen-year units.

Ex. 6. From a well known Swedish text-book in mathematics I quote:

In the spring 1937, 8 pheasants were left on a desolated island. ... In
the spring 1941 the number of pheasants was 705. How many could be
expected in spring 1942 [assuming exponential growth]?

The book uses the equation y = 8 - 10%* (y number of pheasants x years after 1937)

to get
lg (m

() _
k== 0.486,
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which gives the answer 8 - 1050486 ~ 2153 pheasants. This problem appears in
several editions of the book, with the same solution.

Comment: A simpler way would be to define four years as 1 time unit. Then the

rate of change per time unit is %. 5 years equal % time units, thus § = (%5)Z
gives y ~ 2160; a quicker, simpler and more accurate result, as we avoid intermediate
round-off errors. (The accuracy point turns out to be less important as, due to food

shortage, the true value was 1325.)

Remark. In example 6, there is a risk that obstinate students stick to the familiar
procedure based upon equation (1) or (1’). This would spoil the attempt to teach a
new way of viewing the situation.

One strategy for imposing the “new” way of modelling the problems is to give
numerical values which are convenient for the proposed model and to demand that
the problems be solved without calculator. A serious draw-back with calculators in
situations of mathematics learning is that the calculator is so powerful that even
very clumsy solutions may be quicker than the time needed to grasp the elegant
solution. This hampers the development of cognitive tools.

Ex. 7. A radioactive substance is reduced by 36.0% in 28 minutes and 16 seconds.
a) Without calculator, compute the reduction in half the time.
b) How long does it take before 48.8% of the substance has vanished.

Comment: In Ta) the remaining factor is 0.64, thus a convenient square, so in half
the time the substance is reduced by 20%.

In 7b) the remaining factor is 0.512, thus 0.643/2, so the time required would be
a one and a half 28-min-16-sec-time-unit, or 42 minutes and 24 seconds.

3 A simple study

At the end of my course the students had a written exam. One problem was the
following:

Ex. 8. The diagonal of the sitting-room in a flat is 9 m. On a map of the flat
the same diagonal is 45 mm. The total area of the flat is 22 square cm on the map.
What is the real area of the flat?

The result was depressing. Little more than half of the students managed to
solve the task correctly. Among the errors were the belief that the area computed
was the area of the sitting-room, not of the entire flat, and in that case there is no
solution. There were also several attempts with a linear model, which gives the area
4400 cm?. Some students realized that this would call for a very narrow flat, but
others changed the units to 44 m2. This confirms the persistence of deeply rooted
misconceptions.
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4 Concluding remarks

The ideas presented above are most definitely not new. But my impression is that
they have vanished from general use in mathematics teaching during the recent
decades, presumably in the wake of calculators invading maths’ class-rooms.

I believe many university mathematics teachers have occasionally wondered how
the students have spent their pre-university careers; it often happens that one must
repeat even very fundamental procedures from elementary levels.

The danger is that repetition may be boring to those students who do not need
it. But, in real life, it may be of extreme importance that a result is correct. For
an engineer, the ability to find different ways of checking a crucial calculation is a
fundamental one. Moreover, in suggesting alternative ways of solving old problems,
we can challenge the whole group of students.

The impact on the weaker students was a disappointment. My impression, how-
ever, is that the better students did learn something essential from the exercises.
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Introduction

The decline of mathematical ability of undergraduate entrants to undergraduate en-
gineering courses in the United Kingdom has been well documented. The publication
this year of a report into mathematics education post-14 makes some recommenda-
tions for rescuing the situation.

1 What is the mathematics problem?

Three aspects of mathematics education in the United Kingdom are of particu-
lar concern: the number of candidates for A-level mathematics, the lack of basic
mathematical knowledge and skills among university entrants and the shortage of
mathematics teachers. These are examined, in turn, in this Section.

1.1 Candidate numbers

The number of A level candidates in 1991 was 74 972; this had fallen to 64 605 by
1995, including a drop of over 6 000 between 1992 and 1993. Small increases in the
next four years led to false hopes that the decline had been arrested, but the decline
started again in 1998. By 2001 the number had dipped to 65 891 and then suffered
an 18% fall to 53 940 in 2002, followed by a slight increase to 55917 last year. The
fact that there was a failure rate of some 29% in AS mathematics the previous year
was clearly the over-riding factor. In 2002 the failure rate in AS mathematics had
reduced but remained substantially above 20%, significantly higher than in other
subjects. The revisions that are being introduced will not have an effect until 2005.

1.2 Knowledge shortfall

There is well-documented concern that students arriving at university now show
less mathematical fluency than their counterparts of a decade ago; see, for example,
Mustoe (2002), Mustoe and Lawson (2002) and the reports Engineering Mathematics
Matters (1999) and Measuring the Mathematics Problem (2000). What we are
discussing is really basic mathematics - simple algebraic manipulation, simple ideas
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in calculus etc; in fact, the sort of mathematics of which we could assume ten
years ago that the new students would have a firm grasp. These lacunae are not
easily or speedily filled. A major problem has, and remains, the gap between GCSE
mathematics and its A level counterpart. The fact that candidates can gain a grade
C on little more than 22% of the raw marks and a Grade B by taking the two middle
papers, and hence having little exposure to algebra is deeply worrying.

1.3 Teacher shortages

Despite the efforts of the Teacher Training Agency, the recruitment to target of
mathematics teacher trainees has failed to reach 80% of the places made available.
Last year, the initiatives aimed at increasing recruitment resulted in the disappoint-
ing figure of 78 extra teachers successfully completing the course. To meet current
intake targets about 38% of graduates with a first degree in mathematics would be
required to embark on training; this will not happen. Added to that is the fact
that a sizeable proportion of the total mathematics teaching force is over 50 and the
future does not seem rosy.

1.4 Will the situation improve?

It would take an extreme optimist to believe that things will not get worse before
they start to get any better. Any noticeable improvements will take some time to
materialise. Is it being pessimistic to forecast that such improvements will not occur
in the foreseeable future?

2 Making Mathematics Count—the Report of the
Inquiry into Post-14 Mathematics Education

On February 24*"" this year the long-awaited report of the Government inquiry, led
by Professor Smith, into mathematics education post-14 was published.

In his foreword to the Secretary of State for Education and Skills, Professor Smith
highlighted the deep concerns expressed by so many “important stakeholders” about
the learning and teaching of mathematics in England: there was a widespread belief
that the situation had reached crisis level. The Report identifies three key areas of
especial concern: there was a critical shortage of specialist mathematics teachers; the
current framework of the curriculum and qualifications failed to meet the needs of
“learners, higher education and employers”; there should be provision for supporting
those currently teaching mathematics via continuing professional development and
other resources.

2.1 Outline of the Report

The Inquiry got under way in late 2002 in response to growing disquiet being ex-
pressed about mathematics education in the U.K. The disastrous failure rate at AS
mathematics in 2001 and the subsequent drop of almost 20% in A level entries for
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the following academic year (on top of a fall of almost 10% in entries during the
previous decade) finally seemed to have made the alarm bells audible. The contin-
ued failure to recruit and retain specialist teachers of mathematics, despite the best
efforts of the Teacher Training Agency, had put the U.K. in a situation where well
over one-third of each year’s graduates in mathematics would need to go into teach-
ing for each of the next few years just to close the gap, and that takes no account
of the age profile of teachers in post, which indicates a much higher number than
currently who will be reaching retirement age in the near future.

The report emphasises the importance of mathematics in today’s economy and
highlights the breadth of career opportunities for mathematics graduates; in a sense,
mathematics has been a victim of its own success - teaching mathematics is perceived
by many graduates as low down on the scale of attractive careers and some clear
incentives are needed to attract graduates into the teaching profession in sufficient
numbers.

Having put the case for the importance of mathematics the report takes a de-
tailed look at the supply of teachers of mathematics, reviews current pathways in
mathematics education and lays out suggested actions on these pathways and pos-
sible future pathways. Support for the teaching and learning of mathematics is
considered and the need for national and regional infrastructures is argued.

2.2 The recommendations

In all, the report lists 44 recommendations, some of which can and should be im-
plemented fairly swiftly, whilst others require much resourcing and considerable
structural change and will require a longer time-scale to bring into play.

There should be general agreement in the U.K. mathematics community on many
of the recommendations. However, one recommendation that has already proved
controversial concerns the role of Statistics and Data Handling in the GCSE (16+)
mathematics syllabus. Professor Smith, himself a statistician, suggested that much
of the topic could better be taught in an integrated manner in other subjects which
make use of the techniques, thereby freeing up time in the mathematics timetable
to the acquisition of mastery of “core mathematical concepts”.

The first two recommendations are designed to give mathematics a higher profile.
It is suggested that a high-level post within the Education department needs to be
created for someone to have a specific responsibility for the subject. The Advisory
Council on Mathematics Education should have increased support and a similar body
should be established to carry out a parallel role with regard to strategic issues in
research and knowledge transfer.

Recognising the need for fresh incentives to attract more graduates into teaching
it is suggested that the possibility of enhanced remuneration for teachers of subjects
where there is a shortage, such as mathematics, should be re-examined. In addi-
tion, fast-tracking towards teacher certification could provide an additional supply
of teachers, albeit up to Key Stage 3 only, for example.

The seeming failure of GCSE to meet the needs of its constituents led the Inquiry
to recommend a two-tier system for GCSE mathematics and to make the subject a
double-award one like science, in recognition of the amount of work it requires for
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success. One bone of contention has been that GCSE mathematics does not stretch
the most able, and the Inquiry asks for special attention to be paid to this aspect.
One size clearly does not fit all, no matter how it is packaged. The catastrophe
that was AS mathematics in 2001 has resulted in attempts to ameliorate the situ-
ation by reducing syllabus content. If the next few years do not see a significant
improvement in numbers taking mathematics post-16 the Inquiry suggests that rad-
ical measures, including some form of financial inducement, be considered—another
recommendation which is likely to attract considerable opposition.

A strong element of the recommendations is the provision of fully-resourced sup-
port for mathematics teachers in the form of CPD which might be rewarded finan-
cially. Laudable as this idea is, it is going to take a strong shove from Government
and a culture shift to get it implemented. Professor Smith states that about a
quarter of mathematics teachers currently employed spend part of their time not
teaching mathematics, and when you ask who is going to cover for mathematics
teachers whilst they undertake their CPD the scale of the task comes sharply into
focus.

As a mechanism for the provision of this support it is proposed that a National
Centre for Excellence in Mathematics Teaching be established, together with nine
Regional Mathematics Centres. In addition to supporting the delivery of CPD, the
infrastructure should provide both a strategic co-ordination of and local support for
a wide range of resource provision for the support of the teaching and learning of
mathematics. Among elements to be considered are a resource for dissemination
of educational research (including those relating to the use of ICT); networking
with local schools, colleges, higher education and business and building on relevant
existing mathematics support activities and initiatives.

In summary, the Inquiry has identified three areas of especial concern: the short-
age of specialist mathematics teachers in schools; the failure of the current curricu-
lum and qualifications framework to achieve fitness for purpose; the need to support
current teachers of mathematics through CPD inter alia.

3 Conclusions

The message from the Inquiry Report is clear: unless the U.K. Government acts
swiftly, decisively and fearlessly then mathematics education is in danger of terminal
decline. That the response has, so far, been underwhelming is a matter for deep
concern. “Let the shipwrecks of others be your sea-marks” (attributed to Tony
Hancock).
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E-learning is a rapidly growing activity, and more and more students get their ed-
ucation through the web-based courses. It seems there is a competition going on,
among different institutions, in offering web-based education. Until now, we have
seen only very few reports about the students’ opinions of such education.
Mathematics has a negative development at universities and colleges. Numbers
of students in mathematics courses and those passing the exams successfully are
rapidly decreasing. To overturn this negative development, it may be necessary to
teach in a different way, where new technology could play an important role. The
Xmath project, which was a project within the EU Socrates Minerva programme
scheme, was an attempt to meet these challenges. The aim of the project was to use
new technology to present mathematics on the web, and to make a Pilot course for
engineering students and for teacher training students available free on the WWW.
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The pilot course consists of theory, applications, problems and tests, in addition to
a web-based step-by-step calculator and a chat programme made for scientific talk.

The Pilot course has been tested by teacher training students in Norway and
engineering students in Slovakia and in Spain. Students were asked to give comments
on the contents, structure, educational calculator and chat programme. They were
also asked to give comments on their own opinion and experience with the e-learning
in general.

Evaluation of the pilot course in teacher training
education in Norway

The pilot course was tested by a group of students following a calculus course in
the academic year 2002/2003. The students were partly off-campus. There were
17 students following the course. 7 of them were students in the teacher training
education. The others were external students, trained teachers who were partly
students and partly working.

The students had 5 lectures during the term, and because of the few lessons the
students got, they had to study a lot on their own, and they could not be taught
all the content they were expected to learn. The lessons were focused on the harder
concepts. Other concepts were discussed as they came up naturally in these lessons.

The students had a Norwegian textbook. They were organised into groups of 2-5
students, but two students were on their own. Some of them had physical meetings,
others communicated by mail, phone and a learning management system.

On these conditions the pilot course had to be a supplement for the students.
They were given a group paper connected to the course where they were told to
evaluate both the contents of the course, and how it functioned pedagogically. They
were asked to use the web-calculator, and give an evaluation of it. They were told
to try Scientific Talk, give comments on its functionality and suggest improvements.

Students’ opinions

Contents:

e the content is relevant according to the aims and objectives of their course

e the pilot course can work as a supplement to their text book

Composition and representation:

Positive
e The structure of the main page
e The size of the text, which makes it easy readable

o [llustrative figures placed inside the text
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Negative
e Too much scrolling
e The use of colours are not consequent

e Blue colours are associated with hyperlinks

3.1 Representation of the contents:

Positive
e The course work as a place to find answers to the questions they might have
e The groups are positive to the pedagogical way of presenting the content
e They are also positive to the use of tests, problems and examples
Negative
e One group miss a search function

e One group would like a better system of where to find problems and tests
according to different subjects

e All groups mention in different places in their report that they have problems
with the language, and would like to have a Norwegian version

The different modules:

e The students want all modules to have the same structure
e The use of frames are discussed, some students like to have a “working win-

dow”, others do not

Xmath Educational Calculator:

e The students find it easy to use, except for writing the mathematical expres-
sions

e They are very satisfied with the step by step function.

Scientific Talk:

e None of the students are familiar with LaTeX, and find the use of symbols
panels very time-consuming

e They want “pull down” menus

e Writing text is no problem.
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General:

e Many of these students have a job in addition to their studies. They prefer
net based education, since they do not have to leave their job and family.

e The students find it very time consuming to write mathematics that can be
sent via Internet

e They are concerned about the communication with other students and teachers

e They find it important to have real meetings and software that makes commu-
nication and collaboration easily.

Evaluation of the pilot course in engineers in Spain

The pilot course was tested by a group of 50 students following a standard calculus
course in the academic year 2003/2004. The learning used is classical learning:
Lectures, practical lessons and laboratories.

The target group consisted of only 20 students from the group. Students had 2
lectures per week and 3 practical lessons, some in the maths lab. They used a
Spanish textbook written by several Spanish teachers.

Students were free to visit the Pilot course at their convenience. Some times the
professor advised it could be better to run some modules with some colleague to
comment, discuss, etc.

On these conditions the main goal of the Pilot course was to enhance the math-
ematical concepts involving the topics which the Pilot course is dealing with.

Some restrictions:

We did not use other facilities of blackboard like Scientific Talk because the students
could join the teacher every day.
It was not possible to use the Xmath Education Calculator as it was not working.
Questions submitted to students were the same as used in the Questionnaire for
Norwegian students. We have added one more question about the time used for
running the Pilot course.

Students’ opinions

Contents:

e Sometimes the concepts are introduced with lower deep we need. In other
topics we can refresh concepts of Secondary School.

e In general the pilot course can work as a supplement to textbook.
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Composition and representation:

Positive
e The structure of the main page.
e The size of the text, which makes it easy readable
o Illustrative figures placed inside the text
e Links to other pages
Negative

e Lack of homogeneity between the pages

Representation of the contents:

Positive
e The students are satisfied with the course. After lectures they are glad to run
the course. They can understand all topics we are teaching in the lectures

more easy.

e The students are positive to the pedagogical way of presenting the content,
and also the use of problems, tests, puzzles, exercises, etc.

Negative

e Language—preferably Spanish

The different modules:

e Students want all modules to have the same structure—very important

e More easy navigation in Differentiation and Integration modules

Xmath Educational Calculator:

e Not working

Scientific Talk:

e Not used
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General:

e Students agree with the goal: to enhance the traditional method of teaching.

e They liked to deep in distance learning for traditional Universities: tutorials
by e-mail, files sent to professor, etc.

e The professor is important.

e Students had not much time to run the course. They have a strict curriculum
and they need to study a lot of topics. The average time of running the course
was 12 hours per student.

e For our students this course could be an introductory course in Calculus I. We
need more topics and more depth in the topics.

e More tests and exercises will be welcome.

Evaluation of the pilot course in engineering educa-
tion in Slovakia

The pilot course was tested by 3 different groups of students. There were 13 Slovak
students and 2 English speaking foreign students in the first year of their study at the
Faculty of Mechanical Engineering, Slovak University of Technology in Bratislava,
taking the basic course on Mathematics I in the English-speaking group. 3 re-
sponses to the questionnaire we have received from the English speaking students in
Australia, who were not studying Mathematics, but wanted to be volunteers to go
through the text and to check their owns mathematical abilities and understanding.

In the basic course Mathematics I students had 2 hours of lectures and 2 hours
of practical lessons per week, every second week in the computer lab. They used
a Slovak textbook written by their teachers. Students were encouraged to use the
Pilot course on their own, as an additional source of study material available in the
computer lab. They used it not during the practicals, but in their free time.

Some students took their task seriously and tried to help in order to create a good
source of teaching material. Some were very sceptic and did not regard electronic
sources of teaching materials as very useful because of the lack of access to computers
and Internet at our university.

All students but the 2 from Australia considered the direct student—teacher
communication as a crucial way of delivering knowledge in the learning process. They
would hardly accept the Pilot course as the only one source material of explaining
the mathematical concepts in a comprehensive way.
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Students’ opinions

Contents:

e Some students found the text very instructive, useful and related to their
course.

e They used it as a supplement to their textbook in Slovak, mostly to find English
terms and expressions. For learning they used primary their Slovak textbooks,
which was easier for them to understand concepts.

e Some students complained about difficult text to understand (especially in
Numbers and Functions) with too many new concepts used in explanations

and descriptions. They found the text to be a not sufficient study material.

e Students pointed to many grammar mistakes and not finished ideas and com-
plicated sentences.

e Some concepts were explained by other unknown concepts, so the whole text
was very difficult to read and understand.

e They did not think it would be a sufficient material on its own.

Composition and representation:

Positive
o Well arranged individual sections
e Good structure and layout of the main page
e Readable text in good size, font and different colours
e Lot of illustrative figures in the text
e Many links to other pages
Negative
e Some unknown and strange symbols
e Different navigation in different modules
e Not all links were working

e No homogeneity between the different modules
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Representation of the contents:

Positive

An easy way to get an answer to some problems with basic terms and notions

Each student can work at his/hers own place: at home, in Internet cafe, in the
school computer lab, wherever

Easy access to other sources of information if necessary (the links to other
sites)

Lot of additional explanatory material—illustrations, applications, stories, puz-
zles, exercises, solved problems, etc.

Negative

Not sufficient text for finding answers to questions regarding understanding

The shift in writing style—sometimes the text is very clear, using basic lan-
guage but at times the language becomes too obscure with too many technical
terms that confuse rather than clarify the concepts

Slovak students would prefer Slovak language

The different modules:

Majority of students liked more the colourful and structured design of modules
Calculus—Differentiation and Integration.

They did not mind the different design; they pointed to problems with getting
used to it.

Some students found modules Numbers and Functions as easier, because there
were no frames—windows to follow simultaneously on the screen.

Most students preferred the page layout of Calculus modules; they liked the
idea to have the text in one part, and examples and other supplementary
material in the other part.

It is clearly marked what type of information (input) is being received, thus
the student does not get confused.

The theory is kept separate from additional information, thus making a clear
distinction between information.

The text is clear and easy to read in Calculus modules, more difficult and
incomprehensible in Numbers and Functions.

Xmath Educational Calculator:

All students responded that the calculator was not working at all.
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Scientific Talk:

Students did not use the programme; they did not feel like to do so and for
what reasons. (In fact, they were not obliged to do so.) They were not sure
how to use the programme. Perhaps a brief explanation on usage once logged
on would be useful.

General:
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Students mostly did not like the idea of a net-based course without real
classes (12).

They were not sure they could understand the mathematics well without face-
to-face explanation and discussion with the teacher.

Electronic courses on Internet can be very useful, particularly the easy access
to any resources, to discussion boards, etc.

Explanations need to be very clear and simple. Without the ‘human touch’,
students can often get confused; therefore such programmes should aim to be
clear and easy to use.

Students were not sure if they would prefer to apply for an Internet e-learning
course on Mathematics, probably yes, but only for enhancing the traditional
courses.
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Abstract

A new mathematics module, for Sports Technology students, was introduced
at Loughborough University for the academic year 2003-4. This paper gives
reasons for, and describes, the new initiatives which feature in this module.
These include small group teaching, the introduction of a computer algebra
system, Matlab, the introduction of group projects into the assessment process
and finally the inclusion of sports related problems into the syllabus. It then
reports on the success of the initiatives. Attendance by the students on the
new module and their end of year results are compared with the previous
year’s figures. Motivation of the students is also discussed. Finally the paper
provides comments upon some of the issues to be addressed if others wish to
adopt some or all of the features introduced in this module.

Introduction

Loughborough University is renowned throughout the UK as being one of the leading
universities for sport. Top sports scholars are attracted to Loughborough to study
and train. Many wish to study sports related subjects and in recent years a course
in Sports Technology has been developed. This course focuses primarily upon the
design and manufacture of sports equipment. It is supported with a background of
manufacturing technology, engineering science, mathematics, statistics and experi-
mental design.

The Mathematics Education Centre (Croft and Robinson, 2003), is responsible
for the teaching of mathematics to the majority of engineering students at the uni-
versity and teaches mathematics to the Sports Technology students. Prior to 2003—4
these students were taught mathematics alongside Manufacturing Engineering stu-
dents in a class of approximately 100 students. However there was poor attendance
by Sports Technology students at mathematics tutorials and a high failure rate in
mathematics. The reasons were varied. Some did not see the relevance of mathe-
matics to their course and therefore were not motivated to study the mathematics
module. Others found the transition from school to university mathematics difficult.

It was decided that a new mathematics module, for first year Sports Technology
students only, would be introduced for the academic year 2003—-4. This coincided
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with a lowering of the mathematics entry requirements for the course. The author
was assigned to teach the new module.

This paper gives reasons for, and describes, the new initiatives which feature in
this module. These include small group teaching, the introduction of a computer
algebra system, Matlab, the introduction of group projects into the assessment pro-
cess and finally the inclusion of sports related problems into the syllabus. We then
report on the success of the initiatives. Attendance by the students on the new
module and their end of year results are compared with the previous year’s figures.
Motivation of the students is also discussed. Finally the paper provides comments
upon some of the issues to be addressed if others wish to adopt some or all of the
features introduced in this course.

The New Initiatives

Four major changes were introduced in the mathematics module for first year sports
technology students in the year 2003—4. The reasons for introducing these initiatives
are outlined below.

Small Group Teaching

Small group teaching followed automatically from the separation of the Sports Tech-
nology students from the Manufacturing Engineering students. However Parsons
(2003) had reported that small group teaching was one of the factors in enabling her
students to overcome high failure rates and we were therefore hopeful that it would
also have a positive effect here.

A Computer Algebra System

There were several reasons for introducing a computer algebra system. The students
on the course had widely varying prior qualifications in mathematics. Able students
would learn a new skill. Less able students would use Matlab to solve mathematical
problems, which may otherwise be beyond them. All the students, regardless of
ability, would use Matlab to avoid tedious and time-consuming calculations, thus
allowing more time for interpretation of answers.

Group Projects

The ability to function as part of a team is a crucial skill for engineers and the
introduction of an assessed group project allows students to learn the skill of team-
work. Moreover, group work provides the chance for students to learn from each
other through discussion. However, there can be drawbacks; some students may not
do their share of the work. How should the project be marked? Should all mem-
bers of the team obtain the same mark or should one allocate marks on the basis
of each person’s contribution? MacBean et al (2001) discuss the above points and
provide an overview of the advantages and disadvantages of introducing group work
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in undergraduate mathematics. We decided that the advantages to be gained, from
students learning to work as part of a team, outweighed the potential disadvantages
with the assessment which we believed could be overcome.

Sports Examples

It was decided that applications of mathematics in sport would be used, wherever
possible, in order that the students would understand that the mathematics being
taught was relevant to their degree. Moreover the group projects would be centred
on applications of mathematics in sport. It has been noted (Yates, 2003) that a
sufficient supply of discipline related problems is one of the factors leading to success
in teaching mathematics to non-specialists.

In addition to these new initiatives, it should be noted that the syllabus for the
course was changed to take account of the lowered entry requirement in mathematics.

Implementation of the New Initiatives

This section describes how the four new initiatives were implemented.

Small Group Teaching

In the year 2003—4 there were 34 first year students registered on the Sports Tech-
nology course. These students were taught for 3 hours per week over two semesters.
The mathematics module was a double module and replaced the two single modules
which had run in previous years. Two hours were set aside for traditional mathemat-
ics teaching and this time was used for the lecturer to introduce new mathematics
and for the students to spend some time doing exercises by hand. The lecturer
quickly got to know all the students and any students who started missing classes
or coursework assignments or who were not performing well were contacted.

A Computer Algebra System

It was decided that the students should learn Matlab as part of the module. Matlab
was chosen as the preferred system as lecturers in the Sports Technology Department
required students to use this for some of their final year projects.

It was implemented into the module as follows. Of the three hours per week
allocated for the module, one hour was set aside for Matlab work. The students
worked in a computer laboratory, with 20 computers. As there were 34 students
and only 20 computers, the students were given the option of working in pairs or
of splitting the group in two. They decided to opt for the former. In the event the
laboratory session normally ran for 90 minutes, with students being free to leave at
the end of 50 minutes, but the lecturer and, a postgraduate student assistant stayed
on to provide help to those students who wished to work longer.

We support the viewpoint that if a computer algebra system is introduced, it is
important to include it in the assessment process. As MacBean et al (2001:7) state,
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“ ..it is clear from our interviews that unless set work (of any kind...) is assessed
students are reluctant to participate”. It was decided that assessment of the Matlab
work would be via the group project work.

Group Projects

Each student was required to take part in two group projects, one at the end of
the first semester and one at the end of the second semester. Each was worth
10% of the module mark. The students were asked to form groups of three. All
the projects required a significant amount of Matlab work and all were based in a
sporting context. The topics covered included windsurfing, pole vault, golf, soccer,
parachuting and athletics. Each group of students was required to submit a project
report, the Matlab files and a poster describing the work undertaken. It was decided
that the students within each group would all receive the same mark, except where it
was made clear that one or more members of the group had not contributed equally
to the final product.

Sports Examples

Sports examples were used throughout the course, both in lectures and on tutorial
sheets. As mentioned already, the group projects were set in a sporting context.
Liaison with the Sports Technology lecturers led to some particularly relevant ex-
amples, such as the long jump, which was used in the mathematics module as an as
an example of projectile motion and was also covered as part of the biomechanics
module.

Outcome of the New Initiatives

In this section we discuss the success or otherwise of the initiatives. First we look at
attendance, then we discuss motivation of the students and the end of year results.

Attendance

As stated previously, attendance at mathematics tutorials/lectures had been an area
of concern in previous years. In the academic year 2002-3, the Mathematics Ed-
ucation Centre recorded attendance at mathematics tutorials and for 2003—4 we
recorded attendance in both lectures and tutorials for the Sports Technology mod-
ule. Figure 1 compares tutorial attendance data for the years 2002-3 and 2003—4.
(Note that some data is missing.) We see immediately that there has been a marked
improvement in attendance. The trend in 2002-3 was downwards, with zero atten-
dance in six of the eleven weeks in semester 2. Although there was a falling away
from high attendance at the beginning of Semester 1 in 20034, it did not fall to zero
as in the previous year. The average tutorial attendance was 21% in 2002-3 and 68%
in 2003-4. We note here that the form of the tutorials was quite different in the
two years under comparison. In 2002-3 the tutorials took the form of a traditional
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mathematics tutorial where the students were expected to work through exercises
and help would be available to those who required it. In 2003—4 the tutorials took
place in a computer laboratory and the students worked through exercises using
Matlab. In 2003—4 students were given some time in the two hour lecture period to
work through exercises by hand. Attendance at lectures followed a similar pattern
to the attendance at the tutorials with an average attendance of 70%. Thus in con-
clusion we see that the new initiatives led to a marked increase in attendance levels,
although there is still room for improvement.
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Figure 1. Comparison of Tutorial Attendance

Motivation

It is not easy to measure the motivation levels of students. Attendance, standard of
work and student feedback can all be used as indicators. We have already noted the
increased levels of attendance. We also found that the students in 20034 worked
very hard on the sports based projects and submitted work of a high standard.
Figure 2 is a poster from one of the groups, who were investigating the effects of
lift, drag and initial velocity on the trajectory of a golf ball. As group projects were
not part of the assessment in 2002—3 there can be no comparison with the previous
year.

In 2002-3, student feedback was gained informally via students visiting the Math-
ematics Learning Support Centre. This feedback, from the few students involved,
was negative. These students had found the mathematics started at a point beyond
their ability and quickly had become very discouraged. In 2003—4, student feedback
was obtained through a series of questionnaires and informal discussion. Apart from
the University’s standard module feedback questionnaire, the questionnaires were
designed by David Marshall, a final year Mathematics student. Under the supervi-
sion of the author, Marshall (2004) wrote a dissertation investigating the effects of
the new initiatives in the Sports Technology module. Student feedback was positive.
We found that most students appreciated the questions set in a sporting context and
had enjoyed the group projects. Also the majority of the students felt that learning
Matlab was worthwhile, not least because they appreciated that it would be a useful
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skill in their later careers. Group projects were particularly highlighted as being
useful in getting students to work hard and to meet deadlines—the students did not
wish to let down other members of the group.

Matlab Project 10: Golf Drive
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Figure 2. Example of a Group Poster

Results

Figure 3 compares the coursework and overall module pass rates in 2003—4 with
those in 2002-3. In the year 2002-3, the students were set ten computer based tests,
which formed their coursework assessment. For 2003—4, the students were set four
computer based tests, which formed 50% of the coursework assessment, and they
also were set two group projects which formed the other 50%. In both years the
students also sat exams at the end of the modules. From Figure 3 we see that there
has been a significant improvement with the new module. The module pass rate has
increased from 55% to 94% and the coursework pass rate has increased from 65%
to 100%. We also found that there was an increase in the level of participation in
the assessment process. In 2002-3 the average number of students sitting each test
was 87%. In 2003—4 the average sitting tests and handing in projects was 97%.

60 + 0 2002-3
40 | m 20034

Percentage

0 . .
Coursework Coursework  Module
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Figure 3. Comparison of Results
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However some caution must be exercised over these comparisons. In 2003-4 the
mathematics entry requirements for the Sports Technology course were lowered and
a more appropriate syllabus was designed for them. Also, in 2002-3, the exam
weighting was 80% whereas in 2003—4 it was 60%.

Conclusions and Some Issues for Others Adopting
These Initiatives

We have reported on the implementation of four major changes in the teaching of
mathematics to Sports Technology students. These were small group teaching, the
introduction of a computer algebra system and group projects and the inclusion
of sports related problems into the syllabus. We found that there were significant
improvements in attendance levels and in pass rates. Moreover the students appeared
more motivated to study the mathematics module.

It is not easy to decide which of the changes introduced had the most impact.
All of them played their part. The small group teaching allowed tracking of an
individual student’s progress and attendance, and intervention could be made when
required. The sports based group projects had a significant impact on motivation
levels. The introduction of Matlab provided the more able students with a new
challenge and also allowed more demanding sports based problems to be set than
would otherwise have been the case. The overall picture is that of students who
see the relevance of mathematics to their degree and future career and hence are
motivated to study it.

For other practitioners wishing to adopt some or all of these changes, there are
many issues to consider. Teaching in small groups has distinct advantages, but
there are necessarily costs incurred in having more teachers involved. Likewise the
introduction of a computer algebra system incurs extra costs—for software licences,
computers and the supervision of laboratory sessions. Much time needs to be in-
vested in providing context-based problems. If group work is to be introduced, there
needs to be consideration given as to how the work will be marked and in advising
students on teamwork. However in the author’s opinion, it is worthwhile addressing
all of these issues if the effect will be to motivate and enthuse engineering students
in their study of mathematics.
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Abstract

The classical tool to visualize the derivative of a function is an animation
where moving secants finally converge to the tangent. The disadvantages of
the moving secants are:

1. The adjacent points defining the secants are hard to distinguish.
2. The notion of the derivative as linearizing a function is not made clear.

3. They give a macroscopic view of a microscopic process.

This paper focuses on a microscopic tool to visualize the derivative: zooming
into a graph of a function. Increasing magnification finally shows the tan-
gent. This kind of zooming for the tangent is an intuitive zooming because it
preserves the aspect ratio.

Other types of zooming with varying aspect ratios are pointed out, especially to
visualize the concept of continuity. These zooming techniques for real functions
are transferred to vector fields. This approach leads to a graphical understand-
ing of and motivation for vector calculus: curl, line integral, integral formula
of GauB. The ideas of this presentation where shown by M. Kawski [1] in 1997.

Different kinds of zooming on real functions

Zooming of first kind—Zooming for differentiability: € ~ d

Zooming into a graph of a function by using a magnifying glass with increasing
magnification is an intuitive zooming because the aspect ratio of the e-d-box is
preserved. Figure 1 and figure 2 show two different states of zooming on a graph of
a function together with its tangent. In each figure both frames mark the same part
of the graph, each left frame has the original size, while each frame on the right is
magnified. In figure 2 the frame in the left picture is so small that it can hardly be
seen in the right there is virtually no difference between the function and its tangent.
This is a zooming with a fixed relation (aspect ratio) between € and 0.
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Fig. 1. Zooming of first kind first step Fig. 2. Zooming of first kind further step

Zooming of zeroth kind—Zooming for continuity: € ~ g

Zooming of zeroth kind means magnifying only the domain and keeping the range
fixed. This kind of zooming can be used for checking the continuity by an e-é-box.
The e-height of the box is given; a suitable d-width of the box must be found, such

T e=5=01,4=0015
\-.
. “
\\
: \ §
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Y

Figure 3. Zooming with fixed range

that the graph of the function will leave the box at its sides. This cannot be checked
without a distorted magnification if the given e-d-ratio of the box is very small.
Therefore the e-height of the box is kept and only the domain is magnified by 1/4.
The dashed lies in the right picture mark the e-6-box of the next step which will be
stretched. So the graph gets horizontally stretched, finally it is a horizontal straight
line, which corresponds to a constant function. “If the domain is small enough, then
the function is nearly constant.” This argument is also used to explain how the
integral can be approximated by Riemann sums.

Linear vector fields

When the notion of derivative is introduced in one dimensional calculus, the students
are already very familiar with the linear function f(x) = ma 4 b. This is the most
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discussed function in school mathematics. A comparable discussion of linear maps
is missed even at university. Linear mappings are well studied within the linear
algebra course but they are not studied from the calculus point of view, because
these examples are too simple.

In this paper we will emphasize linear vector fields. The advantages of considering
linear vector fields are:

1. The derivative is a linear map.

2. Curl and divergence can be “seen”.

3. The Gauf} formula can be checked without -0 by direct calculation.

4. Within simple exercises the integral form of the definition of curl and diver-

gence can be derived by div(L - ) = tr(L) =

L-x)-nds.

1
area(B) §BB(

Classification of vector fields in the plane

Since each matrix can be decomposed into a symmetric and a skew symmetric part,
symmetric and skew symmetric fields are discussed separately.
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Vector fields which are defined by arbitrary symmetric matrices are obtained graphi-
cally just by rotation from the corresponding diagonal matrix (see Figure 4). There-
fore we can restrict to diagonal matrices.

Typical examples of symmetric fields are shown in Figure 5.
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Figure 5. from left to right: both eigenvalues positive, eigenvalues with different
sign, rank one
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All skew-symmetric fields in the plane are unique up to factor. The matrix
is (g _Ob). All graphs of them look similar. In Figure 6 the constant b is positive.
Plane skew symmetric fields are invariant under rotations of the plane.
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Figure 6. Skew symmetric linear field

The divergence of the field is determined only by the symmetric part of a linear

field is determining the divergence of the field while the curl is determined only by
the skew symmetric part.

Zooming on vector fields

A first attempt for zooming on vector fields is to use a magnifying glass on the plot

of the field. In Figure 7 the right box is a highly enlarged small part of the left plot
around the marked point of the same linear field.
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Figure 7. High enlargement with magnification glass

The right box shows a (nearly) constant field and not the expected derivative,
which means the same linear field. The reason is that here only the domain but not
the (image-) range is magnified. This was the main point of zooming of zeroth kind.
This is due to how vector fields are usually plotted: all vectors are plotted with their
whole length up to a (nearly zooming independent) scaling factor. Zooming into
a function in the same way, would magnify the domain but leave the scale for the
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range unchanged. But zooming for differentiability shows the values of the difference

f(x) — f(xo). This is the main difference between zooming of zeroth kind and first
kind.
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Figure 8. Zooming of first kind for vector field

Figure 8 shows in the magnified window not the original vector field F'(x,y) but
the difference F'(z,y) — F(xo,y0). Like zooming into a straight line only one step
reproduces the linear field. Remaining unchanged under zooming of first kind is a
necessary condition for a vector field to be linear.

If we apply this zooming procedure of the first kind to non linear vector fields,
we see changing plots in the magnified windows, but after only a few steps, the

magnified graphics have only slight changes. This is then the linearization of F
(see Figure 9).
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Figure 9. Zooming of first kind on the field F(z,y) = r2—iy2 ().

Figure 9 also makes clear that the curl of a vector field is not a global property;

the curl is a local property. This field looks globally like a swirl but locally after
zooming of first kind it has vanishing curl.

Zooming for line integrals

Finally, we apply zooming of the zeroth kind to the plot of a vector field together with
a curve. The curve becomes a straight line and the vector field nearly a constant.

139



A. Schwenk

We visualize just the explanations for the line integral: subdivide the curve into
small pieces, such that the vector field remains nearly constant and that the curve
remains straight, in other words: such that the conditions for the simple calculations
of the work as “force times distance” are fulfilled.
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Figure 10. Zooming for a line integral
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Abstract

Advanced mathematics software has been developed and is now commonly
available on the Web. Using mathematics software in teaching calculus, there
has been a tendency to replace the analytical reasoning of the process by trial-
and-error methods using Web materials in some eclectic manner. The question
remains if, by such a type of learning process, some basic ideas of teaching cal-
culus is being ignored. Calculus is a hierarchical subject that demands exact-
ness in every detail. In the engineering education process, calculus has a double
role: firstly, as a set of methods and results to use in technology; secondly, as
the language of science and engineering. Mathematics teaching should aim at
learning this language. New pedagogical concepts must be worked out to save
basic ideas of teaching calculus. We at EAU (Estonian Agricultural Univer-
sity) have started to develop calculus syllabus using the mathematical models
paradigm.

1 Teaching calculus using IT

Teaching of mathematics has always been dependent upon technical facilities avail-
able for computation. There is a certain evolutionary ‘equilibrium’ between concepts
of mathematics teaching and computation. Current rapid advances in computation,
linked with a development of mathematical software, should play a major role in
the modernisation of mathematics teaching. But it seems that these new compu-
tation facilities do not immediately become efficient pedagogical instruments. Due
to a rapid development of IT facilities the state of ‘equilibrium’ is going to vanish.
The use of modern software in mathematics teaching without proper pedagogical
considerations may even cause ‘chaos’ in the calculus-learning environment.

The complexity of software facilities is not an advantage, on the contrary it
makes these facilities harder to utilise for pedagogical purposes. When planning
to develop software-based calculus curriculum, it is important to realize that once
we have made some changes, however small, we are going to have a new learning
environment. Starting to use mathematics software in teaching of calculus without
analytical reasoning would be a risky matter. Unfortunately, probably due to not
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understanding the risk, some mathematics software facilities are put forward to help
in the fight against traditional calculus teaching practice. The following text, taken
from one of the commercial mathematics software Web materials, exemplifies the
situation:

The use of new technologies developed for the Web allows new forms of
educational support to be facilitated, enabling new pedagogical concepts.
The trouble with the lecture system is compounded by the fact that our
undergraduate courses, for the most part, have been frozen in the past
and have become unable to adjust to modern demands. It’s time to get
rid of it and open the door to some fresh ideas. Increase efficiency by
teaching several important ideas simultaneously. Make room for more
modern mathematics, moving out of the 19™" century and into the 21°.

The authors’ terms ‘(learning) technology developed for the Web’ and ‘new
forms of educational support’ seem to provide a terminological repository for al-
most every initiative aimed at changing the way in which higher education is con-
ducted. The success-story phrases above about the possibilities of the software to
lead mathematics into the 21%% century could mislead some people, such as univer-
sity administrators—and even the engineering professors who might get the idea
of advocating the ‘just-in-time’ philosophy of using only ‘fragmental’; ‘easy’ soft-
ware mathematics. According to this ideology the students would use only software
when mathematics is needed in the applications, declining any systematic learning
of mathematics.

What is aimed at by mathematical education, and especially by general mathe-
matical education in school and university, is not an efficient mathematical practice
supported by currently available computational tools; rather, it is concerned with
the transmission of the bases of ‘mathematical culture’. The values of such
a culture are social and, like all other social values, they have a stable core which
contributes to shaping our relationship with and interpretation of the surrounding
world ([1], p. 246). One of the social values in a community of engineers is ‘engi-
neering mathematics’—a rather stable amount of core mathematical knowledge and
ideas considered by engineers as natural. Any modified calculus course for engineers
must be in accordance with the existing mathematical culture in engineering. Ac-
cording to the SEFT Mathematics Working Group ([4], p. 7) the mathematical topics
of particular importance include:

e fluency and confidence with numbers;

e fluency and confidence with algebra;

knowledge of trigonometric functions,

understanding of basic calculus and its application to real-world situations;
e proficiency with the collection, management and interpretation of data.

The SEFI Mathematics Working Group also stresses the importance of using the
elements of mathematical modelling in calculus (see [4], p. 49):
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e It is important that the exposition of the modelling process should be intro-
duced as early in the curriculum as is reasonable.

e The first models that are presented should be simple, so that the process is
not obscured by the complexity of the problem, by concepts in engineering not
yet encountered and by notation with which the student is unfamiliar.

e The mathematics used in the first models should be straightforward.
e The models must be realistic.

e The physical situation should be one to which the model has been applied in
practice. It is of little value to apply a mathematical model to a situation to
which it has never been applied, simply to make a pedagogic point.

It seems that the topics above proposed by the SEFI Mathematics Working
Group will guarantee the existing ‘mathematical culture’ for new engineers. Having
in mind a calculus renewal process by using modern mathematical software we must
have clear answers to the following questions:

What is the role of calculus in the teaching process for engineering stu-
dents? Is mathematics only a collection of methods to use, or is it also
an essential part of the knowledge that students must acquire during the
process of education?

Are the teachers of calculus prepared to realize the limitation of using
computers in their teaching activities; and are they aware of the ne-
cessity to develop the ’ paper-and-pencil’ skills of the students in these
circumstances?

Are the teachers of calculus prepared to recognize the conceptual trouble
concerned with transmitting the mathematical culture of engineers into
software-based activities?

These questions should warn us that careful consideration and investigation must
be taken before starting to use a calculus software package. Almost all branches of
science and engineering rely on mathematics as a language of description and analy-
sis. The ability to formulate a mathematical model of a given theoretical problem, to
solve the model, and to interpret the solution are the key aspects of development for
a student—as regards mathematics. The syllabus must support this development.
But the specific role of mathematics must be considered. Mathematics is a hier-
archical subject which demands exactness in every detail. Calculus has
a double role in the education process: firstly, it is an amount of meth-
ods and results largely used in engineering; secondly, it also constitutes
the language of sciences and technique, and the teaching of mathematics
should be orientated to the learning of this language.
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2 The project “Calculus for Engineering Students”

In more and more countries there is a concern about the decline in the mathematical
ability of new entrants to the university degree programmes. The question arises if
the students are able to understand the substance of classical calculus. Teaching and
learning mathematics are not easy tasks. A routine image of the calculus classroom
features a blackboard covered with scarcely readable formulas and exotic symbols.
For some students this image generates fear and anxiety. The declining standard
of mathematical knowledge and skills of new students is the source of this anxiety.
The feeling is justified, for only a few students come to understand the ideas behind
calculus. At the same time we get a clear message from our officials to start to
teach computer-based, application-orientated mathematics. How should we organize
the calculus teaching in these new circumstances? We decided to add a modelling
dimension to our teaching process of calculus and initiated the project Calculus for
Engineering Students, CES.

The project is a continuation of the project Calculus for biological students, which
had previously been worked out at Estonian Agricultural University (see [5,6]). Our
Institute of Mathematics offers 11 points in mathematics and 3 points in statistics
for engineering students. The aim of the CES project is to promote the learning
of the concepts of calculus by presenting simple technical (mathematical) models,
utilising the interdisciplinary approach. The project was also inspired by the ideas of
‘Realistic Mathematics Education” (RME). The RME is a pedagogical theory where
mathematics is considered a real human activity. Van Reeuwijk [8] provides the
following characteristics of RME: ‘real’ world; free productions and constructions;
mathematization and interaction; integrated learning strands. Drijvers [2,3] explains
these points as follows:

1. ‘Real’” world

The learning of mathematics starts from problem situations that students per-
ceive as real or realistic. These can be real life contexts, but they can also arise
from mathematical situations that are meaningful and natural to the students.
The word ‘real’” thus refers to ‘experimentally real’ rather than to ‘real world’.
The didactical phenomenology of the topic provides adequate contexts that
serve as a start for the learning process.

2. Free productions and constructions

Students should have the opportunity to develop their own informal problem-
solving strategies that can lead to the construction of solution procedures. The
models that they develop will gradually turn into generic models for a class of
situations.

3. Mathematization and interaction

Organising phenomena by means of progressive matematization is important
in the learning of mathematics. Usually a distinction is made between two
types of mathematization: horizontal mathematization, where the problem
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situation is modelled into mathematics or vice versa, and vertical mathema-
tization, aiming at a higher level of mathematical abstraction. Interaction
among students and between students and the teacher is important in RME,
because discussion and co-operation enhance the reflection that is essential for
the mathematization process.

4. Integrated learning strands

According to the philosophy of RME, different mathematical topics should be
integrated into one curriculum. The student should develop an integrated view
of mathematics, as well as the flexibility to connect the different sub-domains.

One can add to the ‘Realistic Mathematics Education’ principles the principles
of the anthropological approach in didactics. The anthropological approach shares
with ‘socio-cultural’ approaches in the educational field the vision that mathematics
is seen as the product of a human activity. Mathematical production and thinking
modes are thus seen as dependent on the social and cultural contexts where they
develop. As a consequence, mathematical objects are not absolute objects, but are
entities that arise from the practice of given institutions. As regards the objects
of knowledge it take in charge, any didactic institution develops specific practices,
and this results in specific norms and visions as regards the meaning of knowing
or understanding the object. Theory uses terms such as pragmatic value, epis-
temic value, the routinisation of techniques etc. For obvious reasons of efficiency,
advance of knowledge requires the routinisation of some techniques. This routin-
isation is accompanied by a weakening of the associated theoretical discourse and
by a “naturalisation” of associated knowledge which tends to become transparent,
to be considered as “natural”. A technique that has become routine now become
“de-mathematicised” for the institution. It is important to be aware of this natu-
ralisation process, because through this process techniques lose their “nobility” and
become simple acts.

But for any curriculum development it would be very important to understand
the instrumentation process of the educational field, which is the subject of the er-
gonomic approach. According to Artique [1] in the ergonomic approach the concept
of the “instrument” itself is important. Researchers in this domain are familiar
with working on a professional learning processes, which take place in technologi-
cally complex environments. This theory uses terms such as instrumental genesis,
instrumentalisation. Using mathematics software enables educators to organize the
learning process more efficiently. It enables the student to switch easily between
mathematical representations such as graphs, tables and formulae. This can lead to
more integrated and flexible use of these representations that will be perceived as
different but are in fact related faces of the same die.

For our calculus curriculum renewal project we are going to consider all these
ideas. The main priority must be mathematics and its pedagogical needs. The struc-
tural identity of calculus must be saved. The mathematical culture of engineering,
that is, the core of mathematical knowledge and ideas considered by engineers as
natural, must also be saved. Modern technical facilities must be used carefully so
as not to abide completely in the mathematics software package ideology - not to
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teach the package ideas instead of calculus. In our opinion, this delicate balance is
crucial for the curriculum development.

We are also going to consider the following curriculum renewal principles of a
Calculus Consortium at Harvard University (see [7]):

1. Start from scratch. Do not look at the old syllabus, trying to decide
which topics can be left out. It is much better to take a blank piece of
paper and decide which topics are so central that they must be included.

2. Show students what calculus can do, not what it cannot do. In a first-
year college level course, we should show students the power of calculus,
not the special cases in which it fails.

3. Be realistic about the abilities of the students and about the amount
of time they will dedicate to calculus. In the past, we taught so much so
fast that little understanding was developed. It is far better to teach a
few topics well.

Working out the calculus syllabus at EAU, we shall follow all these ideas.

Yet another important point should be taken into account: we must abandon
elitist mathematics. The logic of progress of the world shows that more and more
students must learn more and more mathematics. In regard to content, we must
agree that ‘less is more’: less memorisation, less mechanics, but more understanding,
more thinking, more relations with Nature. We hope that students will be able to
create simple mathematical models that will help them understand the world in
which they live. A large number of the examples and problems that students see in
the calculus course are given in the context of the real-world problems.

3 Conclusions

1. When designing a calculus curriculum one must carefully seek for the right
balance between pedagogical methods and mathematics software ideology.

2. Calculus has a double role in the education process: it is an amount of methods
and results to use in a scientific research, but it also constitutes the language of
science; and the teaching of mathematics should assist the students in learning
this language.

3. The computer-based learning environment may cause an unexpected transmis-
sion of the bases of ‘mathematical culture’.

4. The descent in the mathematical abilities of the students is a major obstacle,
but also a motivator in the process of calculus teaching.

146



Calculus for Engineers

References

[1]

Artique, M., Learning mathematics in CAS environment: the genesis of reflection
about instrumentation and the dialectics between technical and conceptual work.
International Journal of Computers for Mathematical Learning, 7, pp. 245274,
2002.

Drijvers, P., What issues do we need to know more about: Questions for future
educational research concerning CAS. The state of Computer algebra in Mathe-
matics Education., Bromley, Chartwell-Brat. 1997.

Drijvers, P., Students encountering obstacles using a CAS. International Journal
of Computers for Mathematical Learning, 5(3), pp. 189-209. 2001.

SEFI Mathematics Working Group. http://learn.lboro.ac.uk/mwg/

Sikk, J., Calculus for biological students at EAU. Second Nordic-Baltic Agromet-
rics Conference Karaski, Estonia. Proceedings of the International Conference,
Uppsala, 1999.

Sikk, J., “Calculus; selected chapters for biological students” (in Estonian), 1999.
Institute of Mathematics, EAU. Tartu. 1999.

Calculus Consortium at Harvard University. www.mat .harvard/~calculus

Van Reeuwijk, M., Students’ knowledge of algebra. Proceedings of the 19*" In-
ternational Conference of the Psychology of Mathematics Education.1995.

147



The Graphing Calculator and Linear
Algebra

Agnes Verweij

Delft University of Technology
The Netherlands

e-mail: A.Verweij@ewi.tudelft.nl

Changes in Dutch secondary school mathematics

The topic of this paper is related to changes in secondary school mathematics in the
Netherlands.

e The first change to be mentioned is the adoption of Real Mathematics Educa-

tion at all levels of Dutch secondary schools. A characteristic feature of Real
Mathematics Education is that mathematical concepts and methods are first
introduced and later on applied within the context of problems from real life
or problems from other school subjects such as physics, biology or economics.

In consequence numerical calculations based on real data have made ground
in the secondary school mathematics in the Netherlands at the cost of exact
calculations and algebraic manipulations.

The last important change is that for the last few years this shift has been
supported by the use of the graphing calculator, the GC, and an extensive list
of mathematical formulas in the upper math classes of secondary school and
at the final math exams also.

First reactions of Delft University of Technology

In the academic year of 2001/2002, Dutch universities met for the first time with
a number of first year students who had been educated with Real Mathematics
Education, the list of formulas and the graphing calculator. The Math Department
of Delft University of Technology responded as follows.
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e The traditional self written theoretical syllabi and books for Calculus and Lin-

ear Algebra courses were replaced by modern, American, textbooks. Although
these books do not entirely follow the ideas of Real Math Education, they offer
a lot of applications of mathematics to real life problems and problems from
other scientific disciplines.
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e The short list of formulas used by the students in previous years remained
unchanged.

e The GC was ignored in class and forbidden at examinations. It was thought
to be better if students learned the basic principles of Calculus and Linear
Algebra without any electronic assistance and, when students were eventually
ready for electronic tools, to have them use more advanced tools like a PC
with Maple and Matlab right away.

Evaluation of the math courses in that year clearly showed that the new style
students felt rather uneasy taking math exams without their graphing calculator.
So, when in 2002/2003 the vast majority of the first year students arrived with a GC
in their bags, the use of this tool was tolerated at the Calculus and Linear Algebra
examinations. However, neither the content of the course, nor the character of the
exam problems was changed and most teachers took little notice of the possibilities
of the graphing calculator. Because of this, some students were able to use their
calculators to gain an unintended advantage on the math exams, for example by
creating custom programs.

The next step: a trial project on the GC and Linear
Algebra

The next step was to better integrate the graphing calculator into the curriculum
and to cope with students’ differences in skills using this tool for university math
topics. It was decided that there should be a trial project in the academic year of
2003/2004 to gain experience with the GC and Linear Algebra.

The project should be carried out in a Linear Algebra course and not in a Calculus
course for the following two reasons.

e Linear Algebra, more than Calculus, calls for recurrent calculations of the same
sort that before long do not add much insight.

e In all Linear Algebra courses (except for the one for Civil Engineering), in
contrast with a number of Calculus courses, no exercises with Maple or Matlab
are set so that no competition between different electronic tools can arise.

Unfortunately, owing to the pressure of other work of the two project leaders, the
project was actually set up only shortly before the beginning of the second semester
of 2003/2004. By then the first thing to do was to decide which faculty’s Linear
Algebra course should be the domain of the project. The choice fell on Aerospace
Engineering, because

e the Linear Algebra course for this faculty was programmed in the second
semester,

e the mathematics records and the interest for mathematics of the Aerospace
Engineering students are known to be on an average level in relation to those
of the students of the other faculties,
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this faculty would deliver a substantial number of participating students, over
200, split up into eight Linear Algebra classes,

and last but not least the university mathematics teacher who coordinated the
work of his seven colleagues and himself for this course was very willing to
cooperate in the project.

Design of the project plan

The pilot project aimed at two goals.
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In the first place the students should be made familiar with the possibilities of
their GC as a tool for Linear Algebra.

Secondly, they should use their graphing calculator not only when doing the
usual exercises, but also to do exercises that could not, or not easily, be done
by hand such as applications of Linear Algebra to problems from real life or
other scientific disciplines.

Therefore the following plan was designed.

The students would be provided with a concise guide on the use of their graph-
ing calculator for Linear Algebra.

A number of exercises to be worked on with the GC would be incorporated
in the usual list of recommended exercises. These exercises would be chosen
from those exercises in the Linear Algebra textbook that were already marked
by the author, David C. Lay, to be solved using an electronic tool.

The use of the GC would only be tested at the written exam at the end of the
course. This arose because experiences in other courses with students handing
in results on home made exercises which might increase their final mark, were
not all positive. Teachers were always complaining of catching some students
who copied each others result’s.

The students could choose between five normal (not requiring a calculator)
exam problems and replacing two out of these five by problems meant to be
solved using a graphing calculator. Testing the use of the GC had to take place
on a voluntary basis because a small minority of the students was not in the
possession of a graphing calculator.

The conditions for the use of the GC at the Linear Algebra exam should be
the same as those for the final secondary school exams. This means that

— only some specific types of calculators are permitted,
— no graphic calculator may be connected to another device,
— a student may not borrow another student’s calculator during the exam,

— students, when answering the GC problems, just as with the other prob-
lems, should give the reasoning, the formulas and the intermediate results
leading to their answers.
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Realization of the plan

Eventually the time available for preparing the necessary materials turned out to be
too short for making guides on the use of all permitted types of graphing calculators.
This resulted in the decision to concentrate in this respect only on the TI-83 and
the TI-83 Plus that the vast majority of students brought from secondary school.
Another consequence of the delayed start of the project was that the eight teachers of
the course had little or no time to make the necessary preparations, such as making
themselves familiar with the GC and its possibilities for Linear Algebra.

Only a week after the beginning of the course the general written information
about the project for the students was ready: just like the concise guide on the TI-83
(Plus) and the selection of exercises from the textbook recommended to be worked
with a graphing calculator. In the mean time the students had already worked with
the usual list of exercises, so the GC exercises were listed separately, which raised
the suggestion of extra work. Nevertheless quite a number of the students seemed
to appreciate the project plan and were willing to start the exercises right away.

How the teachers went about with the implementation of the ideas of the project
has not been investigated. Casual remarks made clear that there were striking
differences between them in this respect. Some of them apparently contented them-
selves with handing their students the written information about the project and
subsequently going on as usual. Others tried to stimulate their students to use
the graphing calculator by giving examples and paying some attention to the GC
exercises in class.

Evaluation of students’ reactions to the project

In one of the last class meetings of the course the students were asked to fill in a
questionnaire with respect to their experiences with and their opinions on the pilot
project. Unfortunately many of students did not attend these last meetings and
also one teacher forgot to hand out the forms. Eventually there turned out to be
62 respondents out of the total number of circa 120 students who in the weeks before
still actively participated in the course.

From the 49 respondents who gave their opinion on the value of the information
given about the capabilities of the graphing calculator with respect to Linear
Algebra

e 3 students indicated the given information was “superfluous”,
e 33 students evaluated the information as “worthwhile”,
e 13 students thought it “only a little bit useful”.

The clarity of the concise guide on the use of the TI-83 (Plus) with
Linear Algebra was evaluated by 39 of the 62 respondents. This guide was thought
to be

e “clear and sufficient” by 24 of them,
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e ‘“clear but too brief” by 13 others,
e “unclear” by the remaining 2 students.

Almost half of the respondents (30 out of 62) used the graphing calculator
for Linear Algebra in class or at home.

A vast majority of these (26 out of 30) used it to do homework exercises from
the usual list. The member using GC straightaway were the same as those who
computed the calculations by hand and then use their GC to check their answers.
A good quarter of the respondents (17 students) worked on exercises from the
separate list, but only 6 of them did five or more of these GC exercises.

Topics for which the graphing calculator was used by more than a few of
the 30 users of this tool, were:

e determining the (reduced) echelon form of a matrix (by all 30),
e the determinant of a matrix (by 21 of them),

e the inverse of a matrix (by 17),

e the least-squares solution of a matrix equation (by 7),

e calculating the eigenvalues of a matrix (only by 5).

So the GC was mainly put into action for calculations that can be done by using a
single command from the matrix menu of the TI-83 (Plus). Calculating eigenvalues
for instance can only be done with this calculator by entering the characteristic
polynomial of the matrix as a function and inspecting the graph of this function in
order to determine its zeros.

A vast majority of the respondents (49 out of 62) thought it would be a good
idea if the Linear Algebra course should also pay attention to the considerably
better capabilities of the computer system Maple (on PC) as a tool for Linear
Algebra. Only one third of them (17 students) would like, in addition two examples
of the use of Maple in class, ecercises requring the use of Maple in the course of
materials. Complaints of no guide being available for other graphing calculators
than the TI, for instance for the Casio, were raised by 9 students.

The only other remark about the project made by more than one student, (in
fact also by 9 respondents) was that the use of the graphing calculator with Linear
Algebra calls for more attention from and explanation by the teacher in class.

The exam

As agreed upon, the exam at the end of the course consisted of five problems not
requiring the use of an electronic tool, from which two could be replaced by problems
meant to be solved by using a graphing calculator.

One of the latter problems was about the orbit of a comet. The eccentricity of
the orbit had to be calculated by applying the least-squares method using the four
given pairs of decimal numbers related to different positions of the comet in its orbit.
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The other GC problem had no real world context and no given decimal numbers.
It was a standard problem about transforming a given quadratic form with three
variables into a quadratic form with no cross-term. However, in this case the neces-
sary calculation of eigenvalues could not easily be done by hand and to this purpose
the GC should be used.

As would be expected on the basis of the results of the questionnaire, only a few
students chose to do one or two of the GC problems. In fact, out of the total number
of 240 candidates 27 did so. Of those

e 4 tried to do both GC problems,
e 6 students tackled only the problem about the orbit of a comet,
e 17 candidates chose to do only the problem about the quadratic form.

However, most of them either did all calculations of the GC problem(s) by hand,
or failed before they got to any calculation that could have been delegated to the
graphing calculator. Leaving these candidates aside, the result is:

e 0 students did both GC problems really using the GC,

e 1 student did only the GC problem on the orbit of a comet and actually used
the GC to apply the least-squares method,

e 7 did only the GC problem on the quadratic form and actually used the GC
to calculate eigenvalues.

The quality of 6 out of the 8 solutions in question was good or reasonable.

How many students used the graphing calculator when doing the normal exam
problems and what they used it for, will never be known because they were not
asked to write down anything about it. Considering the results of the questionnaire,
probably a considerable number of candidates delegated some calculations to their
GC and checked other calculations by it. They may have done so mainly when a
(reduced) echelon form was needed.

Conclusions

As mentioned, one of the goals of the pilot project was that students should be
made familiar with the possibilities of the GC as a tool for Linear Algebra. From
the results of the questionnaire this goal appears to have been reasonably attained
with about 50% of the students, especially with respect to determining the (reduced)
echelon form of a matrix.

The other goal was that the graphing calculator should be used not only to do
the usual exercises, but also to do exercises that could not or not easily be done
by hand such as applications of Linear Algebra to real life problems and problems
from other scientific disciplines. The results of the questionnaire and the exam make
clear that the measure in which this goal is attained is absolutely insufficient. This
failure can probably in large part be traced to the poor prior conditions raised by
the delayed start of the preparations for the project.
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Recommendations

It seems to be worthwhile to do a similar project next year with the following changes.
e Preparations should start early so that before the start of the course

— short guides are made up on all GC types brought by the students from
secondary school and

— the recommended GC exercises are integrated in the list of usual exercises.

e Moreover the teachers of the course should make themselves familiar with the
GC in good time and be prepared to explain, in class, both the approach to
the GC exercises and the more advanced capabilities of the GC with respect
to Linear Algebra.

e In addition, the teacher should give examples on the use of Maple with Linear
Algebra, but students should not be invited to hand in results on home made
exercises using Maple.

Final remark
Finally it has to be noted that, even if the proposed changes should turn out to bring
great improvements, a full integration of the GC in a Linear Algebra course and its

exam will be possible only if every student of the course has a graphing calculator
at his or her disposal.
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