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Factorising n by ¢(n)

Factorising n by ¢(n)

Some choices of witnesses to compositeness of n in the
Miller-Rabin test allowe to factorise n:

@ Choice a € Z} \ Z?, gives the factor d = ged(a, n) > 1.
@ Choice a € K, \ L, generates a non-trivial square root of 1
(i.e., c # £1, where c®> = 1 in Z,,), which gives the factors
dip =ged(c+1,n) > 1
We show that the knowledge of the factorisation of n is equivalent
to the knowledge of ¢(n) and we use the same technique as in the

proof of estimating number of false witnesses in the Miller-Rabin
test.
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Proposition

The problem of factorising n is equivalent to the knowledge of
@(n), or from knowledge of one of these facts, the other one can
be calculated in polynomial time.

o From n=[]/_; p{’ we have o(n) = [T/—; p ' (pi — 1).

@ For n = pq, from (n) we can compute p and g as solutions
of the quadratic equation x?> — (n+1 — ¢(n))x +n = 0.
Since p(n)=(p—1)(g—1)=n—(p+q)+ 1, we know sum
and product of two solutions.

@ We design a polynomial algorithm that calculates factorisation
of any n from knowledge of ¢(n) (or another multiple of the
exponent of the group Z3%).
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Factorising n by ¢(n)

Exponent of the group Z;

The exponent of the group Z} is the smallest m > 0 such that
M =1 for all a € Z}. It is denoted by A(n) (the Carmichael
function) and the following formulas hold:

o ATy p) = lem(A(pE). - A(pE))
@ \(p®) = o(p¢) = p¢(p — 1) for primes p > 2
0 A(2°) = &%) —2e2 for ¢ > 3, A(4) =2, A(2) = 1.

Consequence

@ A(n) | ¢(n) for every n, thus ¢(n) is a multiple of the
exponent of the group Z7,.

@ A(n) is even for every n > 2.
e If d | n, then A(d) | A(n).
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Factorising n by ¢(n)

Algorithm for finding a factor of n by A(n)
Input: n > 1 odd, where n # p€ for a prime p,
m such that A(n) | m, m = t 2" for t odd;
Output: d, where d | n, 1 < d < n, or a message "failure”

aiZj{

d < gcd(a, n)
if d > 1 then output d and halt endif
b+ atinZ, (nowacZ:soa™=1inZ,)
forj< 0toh—1do

o d<+ ged(b—1,n)

e it 1 < d < n then output d and halt endif
e b+ b?in Z, enddo

output "failure”
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Factorising n by ¢(n)

Proposition

The probability that the algorithm finds a factor of n is at least %

Choosing a € Z;} \ Z} leads to factorization in part 1, choosing
a € Z}, leads to some square root of 1 in the part 2.

The algorithm can only report failure if a € L is chosen, where
L={a€cZ, when a'? =1 then a'? " = +1,for1 < j < h}.

Similary to the Miller-Rabin test, it can be shown that for
n=T1[/_; p", where r > 2 and p; are odd primes:

2 1.
L] < nyefPt2g| < §|Zn\a
where pro¢ : x = xt?*, g = min{h, hy,..., h,}, m= t2h,

o(p{’) = t;2h and t, t; are odd.
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Time complexity

e If m € O(n) (which is true for ¢(n)), then the algorithm
needs time O(len(n)3). The expected number of iterations
before a success is two.

o If n = didy, then A(d;) | A(n) | m and the algorithm can be
used recursively. There will be at most O(len(n)) recursive
calls of the algorithm.

@ Verifying primality or perfect powers takes roughly O(len(n)3)
(see below).

@ We obtain the full Factorising n from the knowledge of a
multiple of A(n) in time about O(len(n)*).
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Factorising n by ¢(n)

Time complexity

Our algorithm, which with finds the non-trivial factor of n from
knowledge of m, where A(n) | m, works only for odd n # p¢, p is
prime. But this is sufficient:

@ For even n =2/ we find 7 in time O(len(n)). Then we
factorize f with our algorithm, since A\(7) | m.

@ We find the perfect power n = i€ in time
O(len(n)3len(len(n))) and factorize A since A(R) | m.

@ We can check primality of n = p by the Miller-Rabin test
MR(-, k) in time O(klen(n)3) and no longer factorize it.
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Algorithm for recognising a perfect power

Calculating the integer square root
Input: n € N
Output: m = |/n|
Note: If 2'~1 < n < 2/, then 22 < m < 22.
We will calculate the square root of n by bits.

® k — Llen(g)—lj

e m+20

@ for i < k down to 0 do

o if (m+2)? < nthen m <+ m+ 2’ endif enddo

@ output m

The time complexity is O(w len(n)?) = O(len(n)?).

Alena Gollova Factorising n by ¢(n) 10/13



Algorithm for recognising a perfect power

Algorithm for recognising a perfect power

Calculating the integer e—th square root
Input: n € N
Output: m = |/n|
Note: If 2/~1 < n < 2/ then 25 < m < 2.
® k Uen(n)—lj
e
e m+20

@ for i < k down to 0 do
o if (m+2")° < nthen m+ m+ 2’ endif enddo

@ output m

The time complexity is O(2 len(n)3).
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Algorithm for recognising a perfect power

Algorithm for recognising a perfect power

Input: n € N

Output: answer to the question if n = m¢ for some m, e € N.
Note: m>2,2 < e <len(n)+1

o for e < 2 to len(n) + 1 do

o m | /A

o if m® = n then output m, e and return true endif enddo

@ return false

The time complexity is O(Zfig")ﬂ Llen(n)3),

e

replacing the sum by the integral, we get O(len(n)3len(len(n))).
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