Factorising n by $\varphi(n)$ Algorithm for recognising a perfect power

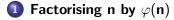
Factorising n by $\varphi(n)$

Mathematical Cryptography, Lecture 21

1/13

Factorising n by $\varphi(\mathbf{n})$ Algorithm for recognising a perfect power

Contents



2 Algorithm for recognising a perfect power

2/13

Some choices of witnesses to compositeness of n in the Miller-Rabin test allowe to factorise n:

- Choice $a \in \mathbb{Z}_n^+ \setminus \mathbb{Z}_n^*$ gives the factor $d = \gcd(a, n) > 1$.
- Choice a ∈ K_n \ L_n generates a non-trivial square root of 1 (i.e., c ≠ ±1, where c² = 1 in Z_n), which gives the factors d_{1,2} = gcd(c ± 1, n) > 1.

We show that the knowledge of the factorisation of n is equivalent to the knowledge of $\varphi(n)$ and we use the same technique as in the proof of estimating number of false witnesses in the Miller-Rabin test.

Proposition

The problem of factorising n is equivalent to the knowledge of $\varphi(n)$, or from knowledge of one of these facts, the other one can be calculated in polynomial time.

- From $n = \prod_{i=1}^{r} p_i^{e_i}$ we have $\varphi(n) = \prod_{i=1}^{r} p_i^{e_i-1}(p_i-1)$.
- For n = pq, from φ(n) we can compute p and q as solutions of the quadratic equation x² (n + 1 φ(n))x + n = 0. Since φ(n) = (p 1)(q 1) = n (p + q) + 1, we know sum and product of two solutions.
- We design a polynomial algorithm that calculates factorisation of any n from knowledge of φ(n) (or another multiple of the exponent of the group Z^{*}_n).

Exponent of the group \mathbb{Z}_n^\ast

The exponent of the group \mathbb{Z}_n^* is the smallest m > 0 such that $a^m = 1$ for all $a \in \mathbb{Z}_n^*$. It is denoted by $\lambda(n)$ (the Carmichael function) and the following formulas hold:

•
$$\lambda(\prod_{i=1}^r p_i^{e_i}) = \operatorname{lcm}(\lambda(p_1^{e_1}), \ldots, \lambda(p_r^{e_r}))$$

•
$$\lambda(p^e) = \varphi(p^e) = p^{e-1}(p-1)$$
 for primes $p > 2$

•
$$\lambda(2^e) = \frac{\varphi(2^e)}{2} = 2^{e-2}$$
 for $e \ge 3$, $\lambda(4) = 2$, $\lambda(2) = 1$.

Consequence

- λ(n) | φ(n) for every n, thus φ(n) is a multiple of the exponent of the group Z^{*}_n.
- $\lambda(n)$ is even for every n > 2.
- If $d \mid n$, then $\lambda(d) \mid \lambda(n)$.

Algorithm for finding a factor of n by $\lambda(n)$

Input: n > 1 odd, where $n \neq p^e$ for a prime p, m such that $\lambda(n) \mid m, m = t 2^h$ for t odd; Output: d, where $d \mid n, 1 < d < n$, or a message "failure"

•
$$a \stackrel{q'}{\leftarrow} \mathbb{Z}_n^+$$

•
$$d \leftarrow gcd(a, n)$$

• if d > 1 then output d and halt endif

•
$$b \leftarrow a^t$$
 in \mathbb{Z}_n (now $a \in \mathbb{Z}_n^*$, so $a^m = 1$ in \mathbb{Z}_n)

• for
$$j \leftarrow 0$$
 to $h-1$ do

•
$$d \leftarrow \operatorname{gcd}(b-1, n)$$

- it 1 < d < n then output d and halt endif
- $b \leftarrow b^2$ in \mathbb{Z}_n enddo

output "failure"

Proposition

The probability that the algorithm finds a factor of *n* is at least $\frac{1}{2}$.

Choosing $a \in \mathbb{Z}_n^+ \setminus \mathbb{Z}_n^*$ leads to factorization in part 1, choosing $a \in \mathbb{Z}_n^*$ leads to some square root of 1 in the part 2. The algorithm can only report failure if $a \in L$ is chosen, where $L = \{a \in \mathbb{Z}_n^*, \text{ when } a^{t 2^j} = 1, \text{ then } a^{t 2^{j-1}} = \pm 1, \text{ for } 1 \leq j \leq h\}$. Similary to the Miller-Rabin test, it can be shown that for $n = \prod_{i=1}^r p_i^{e_i}$, where $r \geq 2$ and p_i are odd primes:

$$|L| \leq \frac{2}{2^r} |\operatorname{Ker} \rho_{t2^g}| \leq \frac{1}{2} |\mathbb{Z}_n^*|,$$

where $\rho_{t^{2^g}}: x \mapsto x^{t^{2^g}}$, $g = \min\{h, h_1, \dots, h_r\}$, $m = t^{2^h}$, $\varphi(p_i^{e_i}) = t_i 2^{h_i}$ and t, t_i are odd.

Time complexity

- If m ∈ O(n) (which is true for φ(n)), then the algorithm needs time O(len(n)³). The expected number of iterations before a success is two.
- If n = d₁d₂, then λ(d_i) | λ(n) | m and the algorithm can be used recursively. There will be at most O(len(n)) recursive calls of the algorithm.
- Verifying primality or perfect powers takes roughly O(len(n)³) (see below).
- We obtain the full Factorising n from the knowledge of a multiple of λ(n) in time about O(len(n)⁴).

Time complexity

Our algorithm, which with finds the non-trivial factor of n from knowledge of m, where $\lambda(n) \mid m$, works only for odd $n \neq p^e$, p is prime. But this is sufficient:

- For even $n = 2^i \tilde{n}$ we find \tilde{n} in time $O(\operatorname{len}(n))$. Then we factorize \tilde{n} with our algorithm, since $\lambda(\tilde{n}) \mid m$.
- We find the perfect power $n = \tilde{n}^e$ in time $O(\operatorname{len}(n)^3 \operatorname{len}(\operatorname{len}(n)))$ and factorize \tilde{n} since $\lambda(\tilde{n}) \mid m$.
- We can check primality of n = p by the Miller-Rabin test MR(·, k) in time O(k len(n)³) and no longer factorize it.

Algorithm for recognising a perfect power

Calculating the integer square root

Input: $n \in \mathbb{N}$ Output: $m = \lfloor \sqrt{n} \rfloor$ Note: If $2^{l-1} \le n < 2^{l}$, then $2^{\frac{l-1}{2}} \le m < 2^{\frac{l}{2}}$. We will calculate the square root of n by bits. • $k \leftarrow \lfloor \frac{\operatorname{len}(n)-1}{2} \rfloor$ • $m \leftarrow 0$ • for $i \leftarrow k$ down to 0 do • if $(m+2^{i})^{2} \le n$ then $m \leftarrow m+2^{i}$ endif enddo • output m

The time complexity is $O(\frac{\operatorname{len}(n)}{2}\operatorname{len}(n)^2) = O(\operatorname{len}(n)^3).$

Algorithm for recognising a perfect power

Calculating the integer e-th square root

Input: $n \in \mathbb{N}$ Output: $m = \lfloor \sqrt[e]{n} \rfloor$ Note: If $2^{l-1} \le n < 2^{l}$, then $2^{\frac{l-1}{e}} \le m < 2^{\frac{l}{e}}$.

- $k \leftarrow \lfloor \frac{\binom{l}{en(n)-1}}{e} \rfloor$
- *m* ← 0
- for $i \leftarrow k$ down to 0 do • if $(m+2^i)^e \le n$ then $m \leftarrow m+2^i$ endif enddo
- output *m*

The time complexity is $O(\frac{1}{e} \operatorname{len}(n)^3)$.

Algorithm for recognising a perfect power

Algorithm for recognising a perfect power

Input: $n \in \mathbb{N}$ Output: answer to the question if $n = m^e$ for some $m, e \in \mathbb{N}$. Note: $m \ge 2, 2 \le e \le \text{len}(n) + 1$

- for $e \leftarrow 2$ to len(n) + 1 do
 - $m \leftarrow \lfloor \sqrt[e]{n} \rfloor$
 - if $m^e = n$ then output m, e and return *true* endif enddo

• return false

The time complexity is $O(\sum_{e=2}^{\operatorname{len}(n)+1} \frac{1}{e} \operatorname{len}(n)^3)$, replacing the sum by the integral, we get $O(\operatorname{len}(n)^3 \operatorname{len}(\operatorname{len}(n)))$.

Factorising n by $\varphi(\mathbf{n})$ Algorithm for recognising a perfect power

Factorising n by $\varphi(n)$

Literature

 Shoup: A Computational Introduction to Number Theory and Algebra. Chapter 10. http://shoup.net/ntb/