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Factorising n by ϕ(n)

Some choices of witnesses to compositeness of n in the
Miller-Rabin test allowe to factorise n:

Choice a ∈ Z+
n \ Z∗n gives the factor d = gcd(a, n) > 1.

Choice a ∈ Kn \ Ln generates a non-trivial square root of 1
(i.e., c 6= ±1, where c2 = 1 in Zn), which gives the factors
d1,2 = gcd(c ± 1, n) > 1.

We show that the knowledge of the factorisation of n is equivalent
to the knowledge of ϕ(n) and we use the same technique as in the
proof of estimating number of false witnesses in the Miller-Rabin
test.
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Factorising n by ϕ(n)

Proposition

The problem of factorising n is equivalent to the knowledge of
ϕ(n), or from knowledge of one of these facts, the other one can
be calculated in polynomial time.

From n =
∏r

i=1 p
ei
i we have ϕ(n) =

∏r
i=1 p

ei−1
i (pi − 1).

For n = pq, from ϕ(n) we can compute p and q as solutions
of the quadratic equation x2 − (n + 1− ϕ(n))x + n = 0.
Since ϕ(n) = (p − 1)(q − 1) = n − (p + q) + 1, we know sum
and product of two solutions.

We design a polynomial algorithm that calculates factorisation
of any n from knowledge of ϕ(n) (or another multiple of the
exponent of the group Z∗n).

Alena Gollova Factorising n by ϕ(n) 4/13



Factorising n by ϕ(n)

Exponent of the group Z∗n

The exponent of the group Z∗n is the smallest m > 0 such that
am = 1 for all a ∈ Z∗n. It is denoted by λ(n) (the Carmichael
function) and the following formulas hold:

λ(
∏r

i=1 p
ei
i ) = lcm(λ(pe11 ), . . . , λ(perr ))

λ(pe) = ϕ(pe) = pe−1(p − 1) for primes p > 2

λ(2e) = ϕ(2e)
2 = 2e−2 for e ≥ 3, λ(4) = 2, λ(2) = 1.

Consequence

λ(n) | ϕ(n) for every n, thus ϕ(n) is a multiple of the
exponent of the group Z∗n.

λ(n) is even for every n > 2.

If d | n, then λ(d) | λ(n).
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Factorising n by ϕ(n)

Algorithm for finding a factor of n by λ(n)

Input: n > 1 odd, where n 6= pe for a prime p,
m such that λ(n) | m, m = t 2h for t odd;

Output: d , where d | n, 1 < d < n, or a message ”failure”

a
6c←− Z+

n

d ← gcd(a, n)

if d > 1 then output d and halt endif

b ← at in Zn (now a ∈ Z∗
n, so am = 1 in Zn)

for j ← 0 to h − 1 do

d ← gcd(b − 1, n)
it 1 < d < n then output d and halt endif
b ← b2 in Zn enddo

output ”failure”
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Factorising n by ϕ(n)

Proposition

The probability that the algorithm finds a factor of n is at least 1
2 .

Choosing a ∈ Z+
n \ Z∗n leads to factorization in part 1, choosing

a ∈ Z∗n leads to some square root of 1 in the part 2.
The algorithm can only report failure if a ∈ L is chosen, where
L = {a ∈ Z∗n, when at 2

j
= 1, then at 2

j−1
= ±1, for 1 ≤ j ≤ h}.

Similary to the Miller-Rabin test, it can be shown that for
n =

∏r
i=1 p

ei
i , where r ≥ 2 and pi are odd primes:

|L| ≤ 2

2r
|Kerρt2g | ≤

1

2
|Z∗n|,

where ρt2g : x 7→ x t2
g
, g = min{h, h1, . . . , hr}, m = t2h,

ϕ(peii ) = ti2
hi and t, ti are odd.
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Factorising n by ϕ(n)

Time complexity

If m ∈ O(n) (which is true for ϕ(n)), then the algorithm
needs time O(len(n)3). The expected number of iterations
before a success is two.

If n = d1d2, then λ(di ) | λ(n) | m and the algorithm can be
used recursively. There will be at most O(len(n)) recursive
calls of the algorithm.

Verifying primality or perfect powers takes roughly O(len(n)3)
(see below).

We obtain the full Factorising n from the knowledge of a
multiple of λ(n) in time about O(len(n)4).
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Factorising n by ϕ(n)

Time complexity

Our algorithm, which with finds the non-trivial factor of n from
knowledge of m, where λ(n) | m, works only for odd n 6= pe , p is
prime. But this is sufficient:

For even n = 2i ñ we find ñ in time O(len(n)). Then we
factorize ñ with our algorithm, since λ(ñ) | m.

We find the perfect power n = ñe in time
O(len(n)3 len(len(n))) and factorize ñ since λ(ñ) | m.

We can check primality of n = p by the Miller-Rabin test
MR(·, k) in time O(k len(n)3) and no longer factorize it.
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Algorithm for recognising a perfect power

Calculating the integer square root

Input: n ∈ N
Output: m = b

√
nc

Note: If 2l−1 ≤ n < 2l , then 2
l−1
2 ≤ m < 2

l
2 .

We will calculate the square root of n by bits.

k ← b len(n)−12 c
m← 0

for i ← k down to 0 do

if (m + 2i )2 ≤ n then m← m + 2i endif enddo

output m

The time complexity is O( len(n)2 len(n)2) = O(len(n)3).
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Algorithm for recognising a perfect power

Calculating the integer e−th square root

Input: n ∈ N
Output: m = b e

√
nc

Note: If 2l−1 ≤ n < 2l , then 2
l−1
e ≤ m < 2

l
e .

k ← b
len(n)−1

e c
m← 0

for i ← k down to 0 do

if (m + 2i )e ≤ n then m← m + 2i endif enddo

output m

The time complexity is O(1e len(n)3).
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Algorithm for recognising a perfect power

Algorithm for recognising a perfect power

Input: n ∈ N
Output: answer to the question if n = me for some m, e ∈ N.
Note: m ≥ 2, 2 ≤ e ≤ len(n) + 1

for e ← 2 to len(n) + 1 do

m← b e
√
nc

if me = n then output m, e and return true endif enddo

return false

The time complexity is O(
∑len(n)+1

e=2
1
e len(n)3),

replacing the sum by the integral, we get O(len(n)3 len(len(n))).
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Factorising n by ϕ(n)
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