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e Algorithm for recognising a perfect power
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Proposition

The problem of factorising n is equivalent to the knowledge of
©(n), or from knowledge of one of these facts, the other one can
be calculated in polynomial time.

Some choices of witnesses to compositeness of n in the
Miller-Rabin test allowe to factorise n:
@ Choice a € Z} \ Z% gives the factor d = ged(a, n) > 1.
@ Choice a € K, \ L, generates a non-trivial square root of 1
(i.e., ¢ # £1, where c2=11in Z,), which gives the factors
dip =ged(c£1,n) > 1.
We show that the knowledge of the factorisation of n is equivalent
to the knowledge of ¢(n) and we use the same technique as in the
proof of estimating number of false witnesses in the Miller-Rabin
test.

o From n=[]/_, p we have o(n) = [T'_; p5 ' (pi — 1).

@ For n = pgq, from (n) we can compute p and q as solutions
of the quadratic equation x2 — (n+ 1 — ¢(n))x +n = 0.
Since p(n) =(p—1)(gq—1)=n—(p+ q) + 1, we know sum
and product of two solutions.

@ We design a polynomial algorithm that calculates factorisation
of any n from knowledge of ¢(n) (or another multiple of the
exponent of the group Z3}).
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Exponent of the group Z;

The exponent of the group Z}, is the smallest m > 0 such that
a™m =1 for all a € Z},. It is denoted by A(n) (the Carmichael
function) and the following formulas hold:

o MNIIi=; A7) = lem(A(py*), - - -, A(PFY))
o A(p®) = ¢(p®) = p~L(p — 1) for primes p > 2

o A(2°) = £Z) —2e 2 for ¢ >3, A(4) = 2, A(2) = 1.

Consequence

@ \(n) | ¢(n) for every n, thus ¢(n) is a multiple of the
exponent of the group Z7,.

@ A(n) is even for every n > 2.
e If d | n, then A(d) | A(n).
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Proposition

The probability that the algorithm finds a factor of n is at least %

Choosing a € Z;} \ Z}, leads to factorization in part 1, choosing
a € Z}, leads to some square root of 1 in the part 2.

The algorithm can only report failure if a € L is chosen, where
L={a€Z, when a'? = 1,then a'? "' = 41 for1 < j < h}.

Similary to the Miller-Rabin test, it can be shown that for
n=T[[;_, p", where r > 2 and p; are odd primes:

2 1,
IL| < ngefPtzg\ < §|Zn‘7

where piog 1 x — xt?* g = min{h, hy,..., h}, m= t2h,
@(pi") = t;2hi and t,t; are odd.
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Algorithm for finding a factor of n by \(n)

Input: n > 1 odd, where n # p¢ for a prime p,
m such that A\(n) | m, m = t 2" for t odd;

Output: d, where d | n, 1 < d < n, or a message "failure”
P

@ a« ZF
e d <« gcd(a,n)
@ if d > 1 then output d and halt endif
@ b« a'inZ, (nowa€cZ:soa"=1inZ2Z,)
@ for j<— 0to h—1do
o d+ged(b—1,n)
e it 1 < d < n then output d and halt endif
o b+ b%inZ, enddo
@ output "failure”
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Time complexity

e If m e O(n) (which is true for ¢(n)), then the algorithm
needs time O(len(n)3). The expected number of iterations
before a success is two.

o If n= didy, then \(d;) | A(n) | m and the algorithm can be
used recursively. There will be at most O(len(n)) recursive
calls of the algorithm.

@ Verifying primality or perfect powers takes roughly O(len(n)3)
(see below).

@ We obtain the full Factorising n from the knowledge of a
multiple of A(n) in time about O(len(n)*).
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Time complexity

Our algorithm, which with finds the non-trivial factor of n from
knowledge of m, where A(n) | m, works only for odd n # p€, p is
prime. But this is sufficient:

@ For even n = 2'f we find 7 in time O(len(n)). Then we
factorize i with our algorithm, since A(71) | m.

@ We find the perfect power n = A€ in time
O(len(n)3len(len(n))) and factorize A since A(A) | m.

@ We can check primality of n = p by the Miller-Rabin test
MR(-, k) in time O(klen(n)3) and no longer factorize it.
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Algorithm for recognising a perfect power

Calculating the integer e—th square root

Input: n € N
Output: m = | /n]
Note: If 2/=1 < n < 2/, then 2liT1 <m< 2é.

’en(n)—IJ

o k+ | .

e m+20
@ for j + k down to 0 do
o if (m+2')¢ < nthen m+ m+ 2 endif enddo

@ output m

The time complexity is O(2 len(n)3).
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Algorithm for recognising a perfect power

Calculating the integer square root
Input: n€ N
Output: m = |/n]
Note: If 2/-1 < n < 2/, then 2'2° < m < 22.
We will calculate the square root of n by bits.
° k \‘len(g)flj
e m+20
o for i + k down to 0 do
o if (m+2")2 < nthen m <+ m+ 2" endif enddo
@ output m

The time complexity is O(% len(n)?) = O(len(n)3).
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Algorithm for recognising a perfect power

Algorithm for recognising a perfect power

Input: n € N
Output: answer to the question if n = m¢ for some m, e € N.
Note: m>2,2 < e <len(n)+1

@ for e <~ 2 to len(n) + 1 do

o m |/n)

o if m® = n then output m, e and return true endif enddo

@ return false

The time complexity is 0(21:2(;)4& 1len(n)3),
replacing the sum by the integral, we get O(len(n)3len(len(n))).

Alena Gollova Factorising n by ¢(n) 12/13



Factorising n by ©(n)
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@ Shoup: A Computational Introduction to Number Theory and
Algebra. Chapter 10.
http://shoup.net/ntb/
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