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Subexponential complexity

The subexponential algorithm for discrete logarithm (SEDL) bilds
on y−smooth integers and on linear algebra over the field Zp.
Therefore, the algorithm SEDL works only for subgroups of Z∗p.

Exponential complexity: O(n) = O(2len(n))

Subexponential complexity: O(2f (len(n))), where f (x) ∈ o(x),
i.e. limx→∞

f (x)
x = 0.

The algorithm SEDL has complexity O(2c
√
len(n) len(len(n))).

For example, for n = 2256 it gives O(2
√
256·8)

.
= O(247).
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Smooth numbers

Definition
Let y ≥ 0 be a real number. An integer m ≥ 1 is called to be
y−smooth if all prime divisors of m are less than y .

Let 0 ≤ y ≤ x be real numbers. Let us denote the number of all
y−smooth numbers up to x as Ψ(y , x).

Examples

Numbers 4, 27, 24, 9216 = 32 · 210 are 3−smooth.

Ψ(2, 10) = 4 since 1, 2, 4, 8 are all 2−smooth numbers up to 10.
Ψ(3, 10) = 7 since 1, 2, 3, 4, 6, 8, 9 are 3-smooth numbers up to 10.

Obviously Ψ(n, n) = n for any n ∈ N.
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Smooth numbers

Theorem 1

Let y = y(x) satisfy limx→∞
ln(x)
y = 0 and limx→∞

ln(y)
ln(x) = 0.

Then
Ψ(y , x) ≥ x e(−1+o(1)) ln(x)

ln(y)
ln(ln(x))

Note

Recall that f ∈ o(g) in case limx→∞
f (x)
g(x) = 0.

The symbol o(1) represents a function f (x) for which
limx→∞ f (x) = 0.
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Smooth numbers

Theorem 2

Let y = y(x) satisfy y ∈ Ω(ln(x)1+ε) for some ε > 0 and
limx→∞

ln(y)
ln(x) = 0. Then

Ψ(y , x) = x e(−1+o(1)) ln(x)
ln(y)

ln( ln(x)
ln(y)

)

Note
Smooth numbers play an important role in the following
subexponential algorithms. We will need estimates of how many
they are for determining an expected running time of the
algorithms.
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Linear algebra over a field

A linear algebra over the field Zp works just like over R.

Linear space over a field

A linear space over the field (T ,+, ·) is the set L together with
addition ⊕ : L× L→ L and numerical multiplication
� : T × L→ L such that:

(L,⊕) is an abelian group with an identity element ō;
For all α, β ∈ T and all ū, v̄ ∈ L:
• α� (ū ⊕ v̄) = (α� ū)⊕ (α� v̄)
• (α + β) � ū = (α� ū)⊕ (β � ū)
• (α · β) � ū = α� (β � ū)
• 1 � ū = ū

Elements of L are called vectors, elements of T scalars.
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Linear space over a field
A subspace of the linear space L is a nonempty subset P ⊆ L
that is closed to addition and numerical multiplication.

A basis of the linear subspace P is its linearly independent
subset B = {b̄1, . . . , b̄n} which generates all the subspace P,
so ū ∈ P just if ū =

∑n
i=1 ai b̄i , where the n-tuple of

coefficients (a1 . . . an) ∈ T×n is uniquely determined.

The n-tuple of coefficients is called the coordinates of the
vector ū with respect to the ordered basis B.

A number of elements of any basis of the subspace P is called
the dimension of the subspace P, here dimP = n.
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Linear space over a field
The vectors ū1, . . . , ūm are linearly dependent if there exist
coefficients c1, . . . , cm ∈ T with at least one ci 6= 0 such that
c1ū1 + . . . cmūm = ō (there exists a non-trivial linear
combination of the vertors that equals to the zero vector).

Let L be a linear space of dimension n, then any m > n
vectors are linearly dependent.

In particular, the set T×n of all n−tuples over the field T
forms a linear space of the dimension n, so any n + 1 vectors
here form a linearly dependent set.
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Linear algebra over the field

Systems of linear equations over a field
The Gaussian elimination algorithm works over any field T ,
instead of dividing equations by their pivots, it uses
multiplication by inverses of their pivots. (In the field T , every
non-zero element has an inverse element.)

Note: Over a ring (over Zn, where n is not a prime), Gaussian
elimination does not work in general because the leading
pivots need not to be invertible.

The system of linear equations can have one solution, or no
solution, or |T |k different solutions, where k is the number of
variables we are allowed to choose arbitrarily in T .
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Linear algebra over a field

Systems of linear equations over a field

All solutions of the homogeneous system Ax̄T = ōT form a
subspace in T×n of dimension k, where k is the number of
variables we are allowed to choose arbitrarily in T .

Every solution of the system of equations Ax̄T = b̄T is the
sum of a partial solution of this system and some solution of
the associated homogeneous system.
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Linear algebra over a field

Matrix calculus over a field
The matrix calculus over a field works just like over reals R -
we can define a determinant and a rank of a matrix, or
calculate inverse matrices.

Matrix calculus over a ring can be done with some specialities
- e.g. the row rank need not be equal to the column rank
(since Gaussian elimination does not work).

A determinant of a matrix can be defined over a ring,
invertible matrices are just those matrices that have an
invertible determinant.
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Representation of an element
Let G be a cyclic group of order n with a generator a, and let
b ∈ G . Representation of the element g ∈ G with respect to the
generator a and the element b is any pair of numbers
(s, t) ∈ Zn × Zn such that g = asbt in G .
Moreover, if t ∈ Z∗n, then the representation is non-trivial.

Proposition
1 For each t ∈ Zn there exists just one s ∈ Zn such that

(s, t) is a representation of g with respect to the generator a
and the element b.

2 If a non-trivial representation (s, t) of 1 with respect to a and
b is known, then discrete logarithm can be computed:
dloga(b) = −st−1 in Zn.
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SEDL algorithm

Subexponential algorithm for discrete logarithm (SEDL)

Input: p, q, a, b, q,
where G = 〈a〉 is a subgroup of order q in the group Z∗p,

p, q are primes,
a is a generator of G , b ∈ G .

Moreover, suppose that |Z∗p| = p − 1 = qm, where q - m.
(We’ll discuss later how to proceed without this assumption.)

Output: x = dloga(b), or a report ”failure”.

The algorithm SEDL looks for a non-trivial representation of 1
with respect to a and b. If it finds any, it computes the discrete
logarithm from it.
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Proposition

Let |Z ∗p | = qm, where p, q are primes and q - m, and let G be a
subgroup of order q and H be a subgroup of order m in Z∗p.
Then Z∗p = G ×̇H is an internal direct product of G and H, so

G ∩ H = {1},
GH = Z

∗
p.

Or, G × H ' Z∗p and each element z ∈ Z∗p can be written uniquely
in the form z = gh, where g ∈ G and h ∈ H.

Proposition

Let |Z∗p| = qm, where p is a prime, and let H be a subgroup of
order m in the group Z∗p. Then for any element z ∈ Z∗p is zq ∈ H.
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First stage of the algorithm SEDL
We use y−smoothness, we will discuss an appropriate choice of the
parameter y < p later on.
Let p1, . . . , pk be all primes up to y , so there are k many of them.

We find (k + 1) y−smooth numbers from Z
∗
p by random, each of

the form asibtihi , where asibti = gi ∈ G , hi ∈ H.

We do this for every 1 ≤ i ≤ k + 1 as follows:

choose randomly si , ti ∈ Zq and h̃i ∈ Z∗p, count hi = h̃qi ∈ H
verify by trial division if zi = asibtihi in Z∗p is y−smooth,
i.e. whether zi = p

ei1
1 · . . . · p

eik
k in Z where 0 < zi < p,

then asibtihi = p
ei1
1 · . . . · p

eik
k in Z∗p

if not, then repeat the random choice

Alena Gollová SEDL 16/34



Facts used in SEDL
Subexponential algorithm for discrete logarithm

Analysis of the algorithm SEDL

Algorithm SEDL

First stage of the algorithm SEDL
Remark:
It would be sufficient to find randomly (k + 1) y−smooth numbers
from the subgroup G , each of the form asibti , but we would not be
able to estimate the expected time for searching because we don’t
know how many y−smooth numbers are in the subgroup G .

We can only estimate how many y−smooth numbers are up to p,
so in Z∗p, and because of this we choose numbers of the form
asibtihi = gihi ∈ Z∗p.
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Second stage of the algorithm SEDL

We use linear algebra over the field Zq, where q = |G |.
We know that q is prime, therefore Zq is a field.

In the first stage, we have found (k + 1) equalities of shape:

asibtihi = p
ei1
1 · ·p

eik
k in Z

∗
p

For each 1 ≤ i ≤ k + 1 we consider the k−tuple of exponents
v̄i = (ei1 , . . . , eik ) as a vector over the field Zq for now.

The set Z×kq of all k−tuples over Zq forms a linear space of
thedimension k. So our (k + 1) vectors must be linearly dependent,
or there exists a non-trivial linear combination of them which
equals to the zero vector.
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Second stage of the algorithm SEDL
There exist coefficients c1, . . . , ck+1 ∈ Zq, not all zero, such that

c1v̄1 + . . .+ ck+1v̄k+1 = ō = (0, . . . , 0) in Z×kq .

If we look at this combination over Z, then all the components of
the result vector are divisible by q.

c1v̄1 + . . .+ ck+1v̄k+1 = (e1, . . . , ek) in Z×k , q | ei for each i .

We find the coefficients c1, . . . , ck+1 using Gaussian elimination,
which works over the field Zq.
(We will solve a homogeneous system of k equations for (k + 1)
variables over Zq. We just need to find one non-trivial solution.)
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Second stage of the algorithm SEDL

Consider again (k + 1) equalities asibtihi = p
ei1
1 · . . . · p

eik
k in Z∗p

from the first stage. If we power each i−th equality to the
corresponding ci and multiply all the equalities by each other, we
get the equality:

asbth = pe11 · . . . · p
ek
k in Z

∗
p,

where s =
∑k+1
i=1 ci si , t =

∑k+1
i=1 ci ti in Zq, h =

∏k+1
i=1 h

ci
i in Z∗p.

Not all ci are zero in Zq, so there could be s 6= 0 and t 6= 0.

Moreover, we know that q | ei , thus peii ∈ H for each i .
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Second stage of the algorithm SEDL
Finaly, we have the equality

asbt = h−1pe11 · . . . · p
ek
k in Z

∗
p,

where the element on the left is from the subgroup G and the
element on the right is from the subgroup H.

But since G ∩H = {1} (see the assumption), this element must be
equal to 1. We have found a representation of 1 with respect to
the generator a and the element b,

asbt = 1 in G ⊆ Z∗p.

If t 6= 0, we compute dloga(b) = −st−1 in Zq.
If t = 0, we report a failure.
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for i ← 1 to k + 1 do

repeat

choose si , ti
6c←− Zq, h̃i

6c←− Z∗p at random
hi ← h̃qi , zi ← a

si bti hi in Zp
test if zi is y−smooth (trial division)

until zi = p
ei1
1 · ·p

eik
k for some ei1 , . . . , eik ∈ Z

v̄i ← (ei1 , . . . , eik ) in Z×k enddo

apply Gaussian elimination over Zq to find c1, . . . , ck+1 ∈ Zq,
not all zero, such that c1v̄1 + . . .+ ck+1v̄k+1 = (0, . . . , 0) in Z×k

q

s ←
∑k+1
i=1 ci si , t ←

∑k+1
i=1 ci ti in Zq

if t = 0 in Zq

then output ”failure”
else x ← (−st−1) in Zq and output x endif
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Example

G = 〈4〉 is a subgroup of order 11 in the group Z∗23, |Z∗23| = 2 · 11,
so H = {±1}. Count dlog4(12) in Z∗23 by SEDL and choose the
parameter of smoothness y = 4.
(Note: 1211 = 1 in Z∗23, so 12 ∈ G and dlog4(12) is defined.)

Stage 1 - we calculate in Z∗23, randomly we get the equations:
R1: 45 · 127 · 1 = 8 = 23, hence v̄1 = (3, 0).
R2: 44 · 129 · 1 = 12 = 22 · 31, hence v̄2 = (2, 1).
R3: 43 · 125 · 1 = 2 = 21, hence v̄3 = (1, 0).

Note: The choice 43 · 125 · (−1) = 21 = 3 · 7 was unsuccessful.
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Example - continued
Stage 2 - we count over Z11, by Gaussian elimination we find
a non-trivial solution for c1(3, 0) + c2(2, 1) + c3(1, 0) = (0, 0)
which is c1 = 1, c2 = 0, c3 = −3 = 8.

Completing of calculations - R11 · R02 · R83 gives equality:
429 · 1247 · 1 = 211 = 1 in Z∗23,

while 4, 12 ∈ G , so we count modulo 11 in the exponent:
47 · 123 = 1 in Z∗23 is a non-trivial representation of 1.

Hence 3x + 7 = 0 in Z11, x = −7 · 3−1 = 5.
The discrete logarithm dlog4(12) = 5.
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Generalization of the algorithm SEDL
The algorithm SEDL can be modified to count discrete logarithm
in a subgroup G of order qe in Z∗p, where p, q are primes,
|Z∗p| = qem, q - m. Let H be a subgroup of order m in Z∗p.

The algorithm SEDL still works because Z∗p = G ×̇H.
The first stage proceeds in the same way, in the second stage we
should solve a homogeneous system of equations over the ring Zqe .

Gaussian elimination over a ring does not work in general, but in
this case it can modified so that it will find a non-trivial solution,
which are coefficients c1, . . . , ck+1 ∈ Zqe , not all zero and even not
all divisible by q. Then the counted t has a chance to be invertible
in Zqe , which happens if q - t. So a non-trivial representation of 1
could be found, and the discrete logarithm can be computed.
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Exercise
Suppose we are able to use the algorithm SEDL to compute the
discrete logarithm in a subgroup G ′ of order qe of the group Z∗p,
where |Z∗p| = p − 1 = qem, q - m. Designe an algorithm that
computes the discrete logarithm in the subgroup G of order q of
Z
∗
p, where q | p − 1 (without any further assumption on q).

Input: the generator a of the group G , b ∈ G , p, q primes
Output: x = dloga(b) in G
Hint: Note that G ⊆ G ′. Find the generator c of the group G ′,
compute dlogc(a), dlogc(b) in G ′ and count x from them.
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Let’s go back to the basic version of the algorithm SEDL which
computes the discrete logarithm of the element b in the subgroup
G = 〈a〉 of order q of the group Z∗p, where p, q are primes,
|Z∗p| = p − 1 = qm and q - m.
We want to analyze the output and the expected running time of
the algorithm.

Proposition

The probability that the algorithm SEDL reports a failure is 1q .

It can be shown that every t ∈ Zq can be found by the algorithm
SEDL with the same probability. Then P[t = 0] = 1

q .

Alena Gollová SEDL 27/34



Facts used in SEDL
Subexponential algorithm for discrete logarithm

Analysis of the algorithm SEDL

Analysis of the algorithm SEDL

Expected time of the algorithm SEDL
First stage: Let’s denote by σ the probability that a random
element from Z

∗
p is y−smooth. Then the expected number of

loops for finding one y−smooth integer of the form
asibtihi ∈ Z∗p equals to 1

σ . We divide each integer by all k
primes up to y (y < p), which takes the time k len(p)2.
We need to find (k + 1) such y−smooth integers.
E (TIME1) = O(k

2

σ len(p)2)

Second stage: Gaussian elimination on a matrix of type
(k , k + 1) requires roughly k3 operations in Zq and its time
dominates in the second stage.
TIME2 = O(k3 len(p)2)

Expected time for SEDL: E (TIME ) = O((k
2

σ + k3) len(p)2)
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Expected time of the algorithm SEDL
We shall estimate k and σ using y .

Assume that y = e ln(p)λ+o(1)
, 0 < λ < 1, so that we can use the

Theorem 1 estimating the number of y−smooth integers up to p.

σ = Ψ(y ,p−1)
p−1 ≥ Ψ(y ,p)

p ≥ e(−1+o(1)) ln(p)
ln(y)

ln(ln(p))

By Chebyshev’s theorem, k = π(y) = Θ( y
ln(y) ).

So it can be deduced (for any y) that k = e(1+o(1)) ln(y).

len(p)2 = eo(1) ln(y) due to our assumption for y .
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Expected time of the algorithm SEDL

We plug in E (TIME ) = O((k
2

σ + k3) len(p)2) to get an estimate:

E (TIME ) ≤ e(1+o(1))max{ ln(p)
ln(y)

ln(ln(p))+2 ln(y); 3 ln(y)}

Now we want to choose the parameter y so that the estimate of
the expected time is minimal.

Let’s denote µ = ln(y), A = ln(p) ln(ln(p)).
We want to find a minimum of function f (µ) = max{Aµ + 2µ; 3µ},
we use the basic calculus (zero first derivation).
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Expected time of the algorithm SEDL

For f1(µ) = A
µ + 2µ is f ′1(µ) = − A

µ2
+ 2 = 0 for µ = ±

√
A
2 .

A local minimum is at µ =
√
A
2 , the value of the minimum is 4

√
A
2 .

The function f2(µ) = 3µ takes the value 3
√
A
2 in this point.

Thus µ =
√
A
2 is the minimum point for f (µ) = max{f1(µ); f2(µ)}

and the value of the minimum is 4
√
A
2 = 2

√
2A.
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Expected time of the algorithm SEDL

µ√
A
2

2
√
2A f1(µ) = A

µ + 2µ,

f2(µ) = 3µ

f (x) = max{f1(µ), f2(µ)}
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Expected time of the algorithm SEDL

We choose the parameter y = e
√
A
2 = e

1√
2

√
ln(p) ln(ln(p))

(note that it satisfies the assumption of our calculation).

For this y , the expected time of algorithm SEDL will be

E (TIME ) ≤ e(2
√
2+o(1))

√
ln(p) ln(ln(p)) ,

thus subexponential with constant 2
√

2 .
= 2.828 in the exponent.

Note
The constant in the exponent can be reduced to 2.0 if we use a
better estimate of number of y−smooth integers (Theorem 2).
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Shoup: A Computational Introduction to Number Theory and
Algebra. Chapter 15.

Linear spaces over a field can be found in Chapter 13.
http://shoup.net/ntb/
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