
Subexponential algorithm
for factoring integers

Mathematical Cryptography,
Lectures 24 - 25

Alena Gollová SEF 1/42

Contents

1 Subexponential algorithm for factoring
Algorithm SEF
Analysis of the algorithm SEF

2 Factoring by quadratic sieve
Algorithm QSF
Analysis of the algorithm QSF

Alena Gollová SEF 2/42

Algorithm SEF

Facts used in SEF
The subexponential algorithm for factoring integers, SEF uses the
same facts like the algorithm SEDL, namely smooth numbers and
linear algebra over a field. It is a probabilistic algorithm which finds
a random square root of 1.

Its time complexity for factoring n is O(2c
√
len(n) len(len(n))).

Proposition

If c ∈ Zn is a non-trivial square root of 1, i.e. c 6= ±1 and c2 = 1
in Zn, then d1,2 = gcd(c ± 1, n) are factors of n.

Alena Gollová SEF 3/42

Algorithm SEF

Subexponential algorithm for factoring (SEF)

Input: an integer n ≥ 2,
which is neither a prime nor a power of a prime,
moreover n is not divisible by any prime p ≤ y ,
where y is the parameter of smoothness (thus n is odd);

Output: a non-trivial factor of n, or a report ”failure”;

The algorithm finds a square root of 1 in Zn, in case it is
non-trivial, it computes a factor of n from it.

Notes
The group Z∗pe is cyclic for p > 2, so there are no non-trivial
square roots of 1 here.
If n is not divisible by any prime p ≤ y , then all y -smooth numbers
in Zn are invertible.

Alena Gollová SEF 4/42

Algorithm SEF

Subexponential algorithm for factoring (SEF)

We provide our assumptions for n by precomputation, which is less
time consuming than the algorithm itself.

n is not a prime:
The Miller-Rabin test MR(−, k̃) requires time O(k̃ len(n)3).

n is not a perfect power, n 6= me for m, e ∈ N:
The algorithm for finding integer roots finds m and e in time
O(len(n)3 len(len(n))).

n is not divisible by any prime p1, . . . , pk ≤ y , where y is the
parameter of smoothness:
Trial division takes time O(k len(n)2), where k < y .

= e
√
ln(n).

Alena Gollová SEF 5/42

Algorithm SEF

First stage of the algorithm SEF
Let p1, . . . , pk be all primes up to y , so there are k many of them.

We find (k + 1) y−smooth square residues in Z∗n at random.
We do this for each 1 ≤ i ≤ k + 1 as follows:

choose randomly ai ∈ Z∗n
verify by trial division if mi = a2i in Zn is y−smooth,
i.e. whether mi = p

ei1
1 · . . . · p

eik
k in Z where 0 ≤ mi < n;

then a2i = p
ei1
1 · . . . · p

eik
k in Z∗n

if not, then repeat the random choice

Alena Gollová SEF 6/42

Algorithm SEF

Second stage of the algorithm SEF
For each 1 ≤ i ≤ k + 1, we consider the k−tuple of exponents
v̄i = (ei1 , . . . , eik) as a vector over Z2. More precisely,
v̄i = ([ei1]2, . . . , [eik]2) ∈ Z

×k
2 , where [ei1]2 ∈ {[0]2, [1]2}.

As Z2 is a field, all k−tuples Z×k2 form a k−dimensional linear
space, so our (k + 1) vectors must be linearly dependent.
There exist coefficients c1, . . . , ck+1 ∈ Z2, not all zero, so that
c1v̄1 + . . .+ ck+1v̄k+1 = (0, . . . , 0) in Z×k2 .

If we look at the combination over Z, then all the components of
the result vector must be even:
c1v̄1 + . . .+ ck+1v̄k+1 = (e1, . . . , ek+1) in Z×k , 2 | ei for each i .

We find the coefficients c1, . . . , ck+1 by Gaussian elimination,
which works over the field Z2.

Alena Gollová SEF 7/42

Algorithm SEF

Second stage of the algorithm SEF

Consider all (k + 1) equations of the form a2i = p
ei1
1 · · · p

eik
k in Z∗n.

If we power each i−th equation to the corresponding ci and
multiply all equations by each other, we get the equation:

a2 = pe11 · ·p
ek
k in Z

∗
n,

where a =
∏k+1
i=1 a

ci
i and all exponents ei are even.

Note: ci ∈ Z2 = {0, 1}, so we only multiplied those equations for
which ci = 1 by each other. Equations for which ci = 0
degenerated by powering to zero to the equation 1 = 1.

Alena Gollová SEF 8/42

Algorithm SEF

Second stage of the algorithm SEF

Let’s take b = p
e1
2
1 · . . . · p

ek
2
k in Z∗n, where ei2 ∈ N.

From
a2 = b2 in Z∗n

we get:
(ab−1)2 = 1 in Z∗n

We have found the square root of 1 in Z∗n, namely c = ab−1.

If c 6= ±1, we find the factor gcd(c − 1, n) of n.
If c = ±1, we report a failure.

Alena Gollová SEF 9/42

Algorithm SEF

for i ← 1 to k + 1 do

repeat

choose ai
6c←− Z∗n at random

mi ← a2i in Zn
test if mi is y−smooth (trial division)

until mi = p
ei1
1 · ·p

eik
k for some ei1 , . . . , eik ∈ Z

v̄i ← (ei1 , . . . , eik) in Z×k enddo

apply Gaussian elimination over Z2 to find c1, . . . , ck+1 ∈ Z2, not all
zero, such that c1v̄1 + . . .+ ck+1v̄k+1 = (0, . . . , 0) in Z×k

2

for j ← 1 to k do ej ←
∑k+1
i=1 cieij in Z enddo

a←
∏k+1
i=1 a

ci
i , b ← p

e1
2
1 · . . . · p

ek
2
k , c ← ab−1 in Zn

if c = ±1 then output ”failure”
else output gcd(c − 1, n) endif

Alena Gollová SEF 10/42

Algorithm SEF

Example
Factorize n = 77 and choose the smoothness parameter y = 5.
(77 is not a power of a prime, nor divisible by primes 2, 3, 5 ≤ y .)

First stage - we count in Z∗77, by random choices we obtain
these equations:
R1: 592 = 16 = 24, hence v̄1 = (4, 0, 0).
R2: 32 = 9 = 32, hence v̄2 = (0, 2, 0).
R3: 372 = 60 = 22 · 3 · 5, hence v̄3 = (2, 1, 1).
R4: 132 = 15 = 3 · 5, hence v̄4 = (0, 1, 1).

Second stage - we count over Z2,
c1v̄1 + c2v̄2 + c3v̄3 + c4v̄4 = ō gives there:
c1(0, 0, 0) + c2(0, 0, 0) + c3(0, 1, 1) + c4(0, 1, 1) = (0, 0, 0)

A non-trivial solution is c1 = c2 = 0, c3 = c4 = 1.

Alena Gollová SEF 11/42

Algorithm SEF

Example

Completing the calculations - we count in Z∗77,
R01 · R02 · R13 · R14 = R3 · R4 gives:

(37 · 13)2 = 22 · 32 · 52, thus 192 = 302 in Z∗77,
c = 19 · 30−1 = 34 is a non-trivial square root of 1.

Hence gcd(c − 1, n) = gcd(33, 77) = 11 is a factor of n = 77.

Remark:

The non-trivial solution c1 = c3 = c4 = 0, c2 = 1 would lead
to the equality R2:

32 = 32 in Z∗77,
c = 3 · 3−1 = 1 is the trivial square root of 1.

The algorithm would report a failure.

Alena Gollová SEF 12/42

Analysis of the algorithm SEF

Proposition
The probability that the algorithm SEF reports a failure is at
most 12 .

Proof

The equation x2 = 1 has exactly 2r solutions in Zn for odd
n =

∏r
i=1 p

ei
i . It can be shown that every solution can be found by

the algorithm SEF with the same probability. Then
P[c = ±1] = 2

2r = 1
2r−1 ≤

1
2 due to the assumption that r ≥ 2.

Alena Gollová SEF 13/42

Analysis of the algorithm SEF

Expected time of SEF algorithm
First stage: Let’s denote by σ the probability that a random
square from Z

∗
n is y−smooth. Then the expected number of

loops for finding one y−smooth square is 1σ .
In each cycle, we divide by all k primes up to y (y < n).
We need to find (k + 1) of these y−smooth squares.
E (TIME1) = O(k

2

σ len(n)2)

Second stage: Gaussian elimination on a matrix of type
(k , k + 1) requires roughly k3 operations in Z2 and its time
dominates in the second stage.
TIME2 = O(k3 len(n)2)

Expected time for SEF: E (TIME) = O((k
2

σ + k3) len(n)2)

Alena Gollová SEF 14/42

Analysis of the algorithm SEF

Expected time of SEF algorithm
We shall estimate k and σ using y as in the algorithm SEDL.
Moreover we should add these two remarks:

We can estimate the number of y−smooth integers up to n by
Theorem 1. Due to the assumption that no pi ≤ y divides n, all
these y−smooth integers are in Z∗n.

But we are looking randomly for y−smooth squares. The question
is, how many y−smooth integers are between the squares in Z∗n?
It can be shown that the probability of hitting a y−smooth square
among squers in Zn is the same as the probability of hitting
a y−smooth integer among all numbers in Zn, the density in both
cases is comparable.

Alena Gollová SEF 15/42

Analysis of the algorithm SEF

Expected time of SEF algorithm

Assume that y = e ln(n)
λ+o(1)

, where 0 < λ < 1.

σ = Ψ(y ,n)
|Z∗n |

≥ Ψ(y ,n)
n ≥ e(−1+o(1)) ln(n)ln(y)

ln(ln(n))

According to Chebyshev’s theorem, k = π(y) = Θ(y
ln(y)),

hence k = e(1+o(1)) ln(y).

len(n)2 = eo(1) ln(y), due to our assumption for y .

Alena Gollová SEF 16/42

Analysis of the algorithm SEF

Expected time of SEF algorithm

We plug in E (TIME) = O((k
2

σ + k3) len(n)2) to get an estimate:

E (TIME) ≤ e(1+o(1))max{ ln(n)ln(y)
ln(ln(n))+2 ln(y);3 ln(y)}

Now we want to choose the parameter y so that the estimate of
the expected time is minimal.

Let’s denote µ = ln(y), A = ln(n) ln(ln(n)).
The minimum of the function in the exponent,

f (µ) = max{Aµ + 2µ; 3µ} occurs in the point µ =
√
A
2 ,

the value of the minimum is 2
√

2A (see the algorithm SEDL).

Alena Gollová SEF 17/42

Analysis of the algorithm SEF

Expected time of SEF algorithm

µ√
A
2

2
√
2A f1(µ) = A

µ + 2µ,

f2(µ) = 3µ

f (x) = max{f1(µ), f2(µ)}

Alena Gollová SEF 18/42

Analysis of the algorithm SEF

Expected time of SEF algorithm

The time will be minimal for y = e
1√
2

√
ln(n) ln(ln(n)),

for this y , the expected time of the algorithm SEF will be

E (TIME) ≤ e(2
√
2+o(1))

√
ln(n) ln(ln(n)) ,

subexponential with the constant 2
√

2 .
= 2.828 in the exponent.

Note
The constant in the exponent can be reduced to 2.0 if we use a
better estimate of the number of y− smooth integers (Theorem 2).

For y = e
1
2

√
ln(n) ln(ln(n)) is E (TIME) ≤ e(2+o(1))

√
ln(n) ln(ln(n)).

Alena Gollová SEF 19/42

Quadratic sieve (QSF)

Quadratic sieve algorithm
A speedup of the algorithm SEF is obtained when y−smooth
squares are not found randomly, but using a quadratic sieve. The
constant in the exponent drops to 1.0.

We need two parameters:

a smoothness parameter y

a sieving parameter z

We assume for both of them:
y , z = e ln(n)

1
2+o(1) .

= e
√
ln(n)

Alena Gollová SEF 20/42

Quadratic sieve (QSF)

Quadratic sieve algorithm
We want to factorize n, which is odd, not prime, not a power of a
prime and not divisible by any prime pi ≤ y .
There are k primes up to y in total. We are looking for k + 1
y−smooth square residues in the first stage.

If we have chosen all ai <
√
n, then we would have a2i < n and we

would receive a2 = a2 in the conclusion (counting modulo n would
not occurre). So we would find the trivial square root of 1, c = 1,
and the algorithm would report failure. To have a chance of
success, the algorithm must choose at least some ai >

√
n.

Alena Gollová SEF 21/42

Quadratic sieve (QSF)

Finding y−smooth square residues
Let’s put m = b

√
nc, so m ∈ N is such that m2 ≤ n < (m + 1)2.

Consider an integer polynomial:

F (x) = (x +m)2 − n

For 1 ≤ s ≤ z , it holds (due to the assumption z .= e
√
ln(n)):

1 ≤ F (s) ≤ z2 + 2z
√
n = n

1
2+o(1)

So n < (s +m)2 ≤ n + n
1
2+o(1) and F (s) is the remainder from

(s +m)2 modulo n, so F (s) is the square residue in Zn.

Alena Gollová SEF 22/42

Quadratic sieve (QSF)

Finding y−smooth square residues
Calculate the values of F (s) for all s = 1, . . . , bzc.
If some F (s) is a y−smooth number, then we have found a
y−smooth square residue in Z∗n.

If F (s) = (s +m)2 − n = pe11 · . . . · p
ek
k in Z,

then (s +m)2 = pe11 · . . . · p
ek
k in Z∗n.

The factorization of the square corresponds to its residue
modulo n, and due to the assumption that pi - n for each
1 ≤ i ≤ k , the square is invertible in Zn.

The remaining question is how to choose z so that we can find a
sufficient number of y−smooth squares among the values of F (s).

Alena Gollová SEF 23/42

Quadratic sieve (QSF)

Finding y−smooth square residues
The density of y -smooth numbers near

√
n is greater than near n.

The probability that any value of F (s) is y−smooth is greater than
the probability that a random square from Z

∗
n is y−smooth.

Let σ̃ be the probability that a random number up to
√
n is

y−smooth, and σ is the probability that a random number up to n
is y−smooth.

σ̃ = Ψ(y ,
√
n)√
n = e(−1+o(1)) ln(

√
n)

ln(y)
ln(ln(

√
n)

ln(y)
)

=

= e(− 14+o(1)) ln(n)ln(y)
ln(ln(n))

> σ = e(−1+o(1)) ln(n)ln(y)
ln(ln(n))

We have used the better estimate for Ψ(y ,
√
n) and the assumption

y .
= e
√
ln(n). This already guarantees a speedup of the first stage.

Alena Gollová SEF 24/42

Quadratic sieve (QSF)

Setting the sieving parameter z
We set the parameter z such that we could have a chance to find
k + 1 y−smooth squares among the values F (1), . . . ,F (bzc).

If σ̃ is the probability that a random number up to
√
n is

y−smooth (so σ̃ also estimates the probability that a random
square residue up to

√
n is y−smooth), then in order to find one

y−smooth square, we need to check on average 1σ̃ of numbers of
the form F (s). Therefore we put z = k

σ̃ .

In case we don’t find enough y−smooth squares, we double the
parameter z and continue searching.

Alena Gollová SEF 25/42

Quadratic sieve (QSF)

Setting the sieving parameter z
Note: There is a ”cheat” in our estimation of the parameter z ,
because we don’t choose numbers randomly!!!

In fact, we do not know how many y−smooth numbers are there
among the values of our polynomial F (x) (there is no rigorous
proof of that). The quadratic sieve algorithm may report a failure
during its first stage since it does not find enough y−smooth
squares.

Nevertheless, the experience shows that the algorithm QSF works
and even in the expected running time (heuristic verification).

Alena Gollová SEF 26/42

Quadratic sieve (QSF)

Sieving procedure
The sieving procedure will speed up the first stage even more.
We will not check individually if F (s) is y−smooth for each s,
but we do it for all F (1), . . . ,F (bzc) together.

We create an array V of length bzc, which is initialized like this:
V [s]← F (s) for all s = 1, . . . , bzc

(There is the subexponential spatial complexity here!)

If we divide each V [s] by all primes p1, . . . , pk ≤ y as many times
as it can be divided, than y−smooth numbers fall through the
sieve:

F (s) is y−smooth iff after dividing by all pi ≤ y is V [s] = 1.

Alena Gollová SEF 27/42

Quadratic sieve (QSF)

Sieving procedure

We save time by dividing only those F (s) (or V[s]) by the prime
p ≤ y , that really are divisible by p.

p | F (s) iff F (s) = 0 in Zp,
iff s (or [s]p ∈ Zp) is the root of F (x),

where F (x) is treated as a polynomial over Zp.

The quadratic polynomial F (x) = (x +m)2 − n has at most two
roots in the field Zp, let us denote them by s1, s2.

F (s) is divisible by p for all s = sj + lp, where sj ∈ {s1, s2} and
l ∈ N such that s ≤ bzc.
(We also remember ”how many times” F (s) can be divided by p
because of the prime factorization of F (s).)

Alena Gollová SEF 28/42

Quadratic sieve (QSF)

Roots of a qvadratic polynomial over Zp

We need to find roots of the polynomial F (x) = (x +m)2 − n
in the field Zp.

Over Z2, F (x) = x2 +m2 − n, and n is odd (our assumption).
For m even, F (x) = x2 − 1 and has the double root 1 ∈ Z2.
For m odd, F (x) = x2 and has the double root 0 ∈ Z2.
Over Zp for p > 2, F (x) = 0 iff (x +m)2 = n in Zp.
If n is not a square in Z∗p, then F (x) has no root in Zp.
If n = (±d)2 is a square in Z∗p, then F (x) has just two roots
in Zp, namely −m ± d .
(We know that n ∈ Z∗p because of our assumption p - n.)

Alena Gollová SEF 29/42

Quadratic sieve (QSF)

Roots of a qvadratic polynomial over Zp
To find the roots in Zp, where p > 2 is a prime, we need:
1 To recognize square residues in Z∗p.

Euler’s criterion: a ∈ Z∗p is a square iff a
p−1
2 = 1 in Zp.

2 To know how to calculate square roots in Z∗p.

• If p ≡ 3 (mod 4), then the square a ∈ Z∗p has two square

roots ±b = ±a
p+1
4 in Z∗p.

• For any prime p > 2 there exists an algorithm for finding
square roots in Z∗p that works in time
O(len(p)3 + h len(h) len(p)2) ⊆ O(len(p)3 len(len(p))),
where p − 1 = 2hm̃, m̃ is odd.

Alena Gollová SEF 30/42

Sieving procedure

Let p1, . . . , pk are all primes upto y .

• for s ← 1 to bzc do V [s]← F (s) enddo
• for i ← 1 to k do

find roots of F (x) in Zpi (there are at least two of them)

for every root sj do

s ← sj
while s ≤ bzc do

e ← 0
repeat V [s]← V [s]

pi
, e ← e + 1

until pi - V [s]
put in list of divisors D[s] for s prime power pei
s ← s + pi enddo

enddo, enddo

• F (s) is y−smooth iff V [s] = 1

Alena Gollová SEF 31/42

Quadratic sieve (QSF)

Sieving procedure - running time

We assume that y , z = e ln(n)
1
2+o(1) .

= e
√
ln(n).

Hence len(y)
.

= len(n)
1
2 .

Initialization of the array V takes time O(z len(n)2).

Computing of the roots of polynomials F (x) over all Zpi takes
roughly O(k len(y)4) = O(k len(n)2).
(There are k primes pi ≤ y , so k < y .

= z)

Sieving itself takes time O(
∑
p≤y

z
p len(p) len(n)2), which is

roughly O(z len(n)3).
This is the dominant time over the previous ones.

Alena Gollová SEF 32/42

Quadratic sieve (QSF)

Sieving procedure - running time
Let’s take a more detailed look at the running time for sieving.

For each prime pi ≤ y , we can find at most two roots s1, s2
and each root gives zpi values F (s) divisible by pi .

A single F (s) can be divided by pi at most logpi (F (s))−times,
which is O(len(n)) divisions.
For sieving with one pi we need the time:

O(zpi len(pi) len(n)2) = O(zpi len(n)2.5).

Let’s sum the times for all primes pi :
O(

∑k
i=1

z
pi
len(n)2,5) = O(z len(n)3).

We have estimated the sum by the integral:∑
pi≤y

1
pi
≤

∫ y
1

1
ỹ
d ỹ = [ln ỹ]y1 = ln y ∈ O(len(n)

1
2)

Alena Gollová SEF 33/42

Algorithm QSF - 1’st stage

m← b
√
nc, F (x) = (x +m)2 − n

repeat

use the sieving procedure with parameter z
(it creates fields V and D of length bzc)
z ← 2z

until V [s] = 1 for at least k + 1 different values of s

for the first k + 1 values of s such that V [s] = 1 do

ai ← s +m
find in D[s] the factorization of a2i = p

ei1
1 · . . . · p

eik
k in Zn

v̄i ← (ei1 , . . . , eik) in Z×k enddo

The second stage is the same as in SEF - Gaussian elimination over Z2
and computing the square root of 1. If it is non-trivial, we factorize n.

Alena Gollová SEF 34/42

Analysis of the algorithm QSF

Expected time of the algorithm QSF

First stage: E (TIME1) = O(z len(n)3) = O(kσ̃ len(n)3)

Second stage: TIME2 = O(k3 len(n)2)

Expected time for QSF: E (TIME) = O((kσ̃ + k3) len(n)3)

If we plug estimates for k and σ̃ in it (as in SEF) we obtain:

E (TIME) ≤ e(1+o(1))max{ 14
ln(n)
ln(y)
ln(ln(n))+ln(y); 3 ln(y)}

Alena Gollová SEF 35/42

Analysis of the algorithm QSF

Setting the smoothness parameter y
We want to choose the smoothness parameter y so that the
expected time is minimal.

Let’s denote µ = ln(y), A = ln(n) ln(ln(n)).
We look for a minimum of the function f (µ) = max{14

A
µ + µ; 3µ}.

The function f1(µ) = 1
4
A
µ + µ has a local minimum at the point

µ =
√
A
2 , the value of the minimum is

√
A.

The function f2(µ) = 3µ takes the value 32
√
A >

√
A at this point.

Since the function f2(µ) is increasing, the point of minimum of the
function f (µ) = max{f1(µ); f2(µ)} will be before the point of
minimum of the function f1(µ), it will be the point at which the
graphs of both functions intersect: f1(µ) = f2(µ) for µ = 1

2
√
2

√
A

The value of the minimum of f (µ) is 3
2
√
2

√
A.

Alena Gollová SEF 36/42

Setting the smoothness parameter y

µ
1
2
√
2

√
A

3
2
√
2

√
A

f1(µ) = 1
4
A
µ + µ,

f2(µ) = 3µ

f (x) = max{f1(µ), f2(µ)}

Alena Gollová SEF 37/42

Analysis of the algorithm QSF

Expected time of the algorithm QSF

We choose the parameter y = e
1
2
√
2

√
A

= e
1
2
√
2

√
ln(n) ln(ln(n))

Then the sieving parameter z = k
σ̃ = e(3

2
√
2

+o(1))
√
ln(n) ln(ln(n)))

(Note that both satisfy the assumptions of our calculation.)

For these y and z , the expected time of the algorithm QSF will be

E (TIME) ≤ e(3
2
√
2

+o(1))
√
ln(n) ln(ln(n))

subexponential with the constant 3
2
√
2
.

= 1.061 in the exponent.

Alena Gollová SEF 38/42

Analysis of the algorithm QSF

Expected time of the algorithm QSF
In determining the parameter y , we were actually held back by
Gaussian elimination. The matrix we eliminate is sparse (has lots of
zeros), since it contains exponents of primes in the factorization of
the found y−smooth squares. If we use special algorithms to solve
a system of k linear equations with (k + 1) variables having a
sparse matrix, we do this work in time O(k2+o(1)).

Then the function f2(µ) = 2µ and the minimum point µ =
√
A
2 of

the function f1(µ) is also the minimum point of the function f (µ).
The value of the minimum will be

√
A.

In this case, for y = e
1
2

√
ln(n) ln(ln(n)) is z = e(1+o(1))

√
ln(n) ln(ln(n)))

and the expected time of the algorithm QSF is:

E (TIME) ≤ e(1+o(1))
√
ln(n) ln(ln(n))

Alena Gollová SEF 39/42

Setting the smoothness parameter y

µ
1
2

√
A

√
A

f1(µ) = 1
4
A
µ + µ,

f2(µ) = 2µ

f (x) = max{f1(µ), f2(µ)}

Alena Gollová SEF 40/42

Appendix

Other subexponential algorithms for factoring
The number field sieve algorithm works in the expected time

E (TIME) ≤ e(c+o(1)) ln(n)
1
3 ln(ln(n))

2
3 ,

where so far the smallest known constant is c = 1.902
(heuristically verified).

Factoring by elliptic curve method has the expected time

E (TIME) ≤ e(
√
2+o(1))

√
ln(p) ln(ln(p)) ln(n)O(1),

where p is the smallest prime dividing n (heuristically verified).
This algorithm has the advantage, unlike the others, that it
has only polynomial spatial complexity.

Alena Gollová SEF 41/42

Algorithms SEF and QSF

Literature
Shoup: A Computational Introduction to Number Theory and
Algebra. Chapter 15.

Linear spaces over a field can be found in Chapter 13.
http://shoup.net/ntb/

Alena Gollová SEF 42/42

	Subexponential algorithm for factoring
	Algorithm SEF
	Analysis of the algorithm SEF

	Factoring by quadratic sieve
	Algorithm QSF
	Analysis of the algorithm QSF

