Elliptic curves Elliptic curves in cryptography

Elliptic curves

Mathematical Cryptography, Lectures 15 - 16

Elliptic curves Elliptic curves in cryptography

Contents

1 Elliptic curves

- Elliptic curves over reals
- Elliptic curves over a finite field

2 Elliptic curves in cryptography

- Diffie-Hellman key establishment
- Discrete logarithm problem

Groups of points on elliptic curves play an important role in modern cryptography. Let us first show elliptic curves over reals and only in a simplified form as follows:

Definition

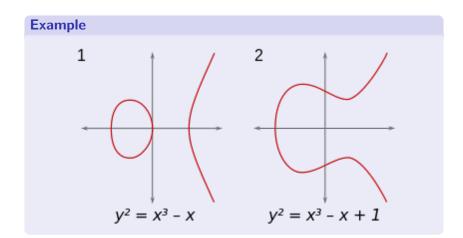
An elliptic curve over \mathbb{R} is the set of all points $(x, y) \in \mathbb{R}^2$ satisfying

$$y^2 = x^3 + ax + b$$

where the cubic polynomial $x^3 + ax + b$ has only simple roots in \mathbb{C} , which happens just if the discriminant $D = 4a^3 + 27b^2 \neq 0$.

Elliptic curves Elliptic curves in cryptography Elliptic curves over reals Elliptic curves over a finite field

Elliptic curves over \mathbb{R}



Addition of points - geometrically

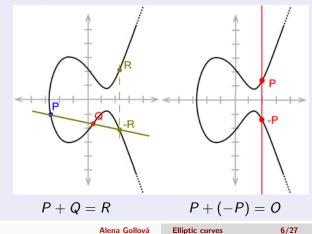
We can define addition of points on an elliptic curve. The definition uses symmetry of the curve along the *x*-axis.

- If P ≠ Q, then points P and Q determine one line. In most cases, this line intersects the curve at just one more point. The sum P + Q is defined to be the point R, which is the mirror image of this intersection (with respect to the x-axis).
- If the line PQ is a tangent to the elliptic curve at a point P (or Q), then the sum P + Q is defined as the point R which is the mirror image of the point P (or Q).
- If the line PQ is parallel to the y-axis, the sum P + Q is defined as a point at infinity (denoted O).

Elliptic curves over *R*

Addition of points - geometrically

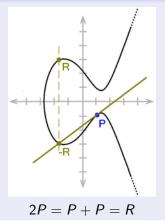
For $P = (p_1, p_2)$ we denote by $-P = (p_1, -p_2)$ the point symmetrical with P with respect to the x-axis.



Addition of points - geometrically

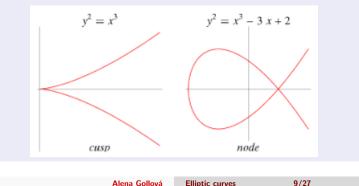
- If P = Q, then we make a tangent to the elliptic curve at the point P. This tangent usually intersects the curve at just one more point. The sum P + P is defined to be the point R, which is the mirror image of this intersection (with respect to the x-axis).
- If the tangent at P is parallel to the y-axis, the sum P + P is defined as a point at infinity (denoted by O).
- Finally, let's define O + P = P, P + O = P, O + O = O.

Addition of points - geometrically



Note

The non-zero discriminant guarantees that the elliptic curve does not intersect itself and that it does not have a sharp break. In this case, the sum of two points is uniquely defined for all pairs on the curve by geometrical constructions.



Proposition

Let $E(\mathbb{R})$ be a set of all points at the elliptic curve $y^2 = x^3 + ax + b$, where $D = 4a^3 + 27b^2 \neq 0$, along with the point at infinity *O*. The set $E(\mathbb{R})$ together with the addition defined geometrically forms an abelian group. $(E(\mathbb{R}), +)$ is called the *group of points on an elliptic curve*.

Proof: Commutativity is obvious, associativity is more difficult to verify. The identity element is the point at infinity O, the opposite element to a point P is the point -P symmetrical with respect to the x-axis.

Addition of points - arithmetically

Let $P = (p_1, p_2)$, $Q = (q_1, q_2)$ be points on the elliptic curve

$$y^2 = x^3 + ax + b$$
, where $D = 4a^3 + 27b^2 \neq 0$.

We want to derive the coordinates of the point R = P + Q from the coordinates of the points P and Q. Let us denote the coordinations of the point $R = (r_1, r_2)$.

Addition of points - arithmetically

1) Let first $P \neq Q$ (nor $-P \neq Q$). The line determined by points P, Q has the equation $y = \lambda x + \kappa$, where $\lambda = \frac{q_2 - p_2}{q_1 - p_1}$ (for $p_1 \neq q_1$), $\kappa = p_2 - \lambda p_1$. We find the x-coordinate of the intersection of the line and the given curve (which is r_1): $(\lambda x + \kappa)^2 = v = x^3 + ax + b$. $0 = x^3 - (\lambda x + \kappa)^2 + ax + b,$ where the coefficient by x^2 equals to $-\lambda^2 = -(p_1 + q_1 + r_1)$ (Viet's formulas for roots). Hence $r_1 = \lambda^2 - p_1 - q_1$. The y-coordinate of the intersection of the line and the curve (which is $-r_2$) is $-r_2 = \lambda r_1 + \kappa$. Hence $r_2 = \lambda (p_1 - r_1) - p_2$.

If the line PQ was a tangent to the curve at the point P, then we get R = -P.

Addition of points - arithmetically

2) Let P = Q (but $p_2 \neq 0$). By the equation $F(x, y) = y^2 - x^3 - ax - b = 0$, a function y(x)is implicitly defined around the point P (assuming the partial derivation of F by y is nonzero at the point P). This allows us to compute the tangent directive to the elliptic curve at the point Pas $y'(x) = \frac{3x^2+a}{2y}$ (the derivation calculated in the point *P*). The tangent to the elliptic curve at point P has the equation $y = \lambda x + \kappa$, where $\lambda = \frac{3p_1^2 + a}{2p_2}$ (for $p_2 \neq 0$), $\kappa = p_2 - \lambda p_1$. By substituting into the equation of the elliptic curve, we find the x-coordinate of the intersection of the tangent and the given curve, $r_1 = \lambda^2 - 2p_1$. Then the y-coordinate of the mirror image of the intersection is $r_2 = \lambda(p_1 - r_1) - p_2$.

Addition of points - arithmetically

Let $P = (p_1, p_2)$, $Q = (q_1, q_2)$ be points on the elliptic curve $E: y^2 = x^3 + ax + b$, where $D = 4a^3 + 27b^2 \neq 0$. The sum R = P + Q is defined as follows:

- If $p_1 = q_1$, $p_2 = -q_2$, then P + Q = O, where O is a point at infinity.
- P + O = P, O + P = P, O + O = O.
- In other cases, $P + Q = R = (r_1, r_2)$, where $r_1 = \lambda^2 - p_1 - q_1$, $r_2 = \lambda(p_1 - r_1) - p_2$, $\lambda = \frac{q_2 - p_2}{q_1 - p_1}$ if $P \neq Q$, $\lambda = \frac{3p_1^2 + a}{2p_2}$ if P = Q.

14/27

Arithmetically, to add points on an elliptic curve, we need addition and subtraction, multiplication and division by non-zero numbers in \mathbb{R} . But we can do all this in any field!

Deriving the coordinates of the intersection of the line $y = \lambda x + \kappa$ and the curve $y^2 = x^3 + ax + b$ can be done over any field (including the formal derivation of polynomials). In doing so, the *x*-coordinate of the intersection r_1 was the third root of a certain cubic polynomial, but a cubic polynomial has at most three roots in any field and Viet's formulas are valid there.

Finally, we can analogously introduce a group of points on an elliptic curve over a finite field, where addition will be defined by the same relations as over \mathbb{R} (we will multiply by inverse elements instead of division).

Every finite field is isomorphic to a Galois field and has p^k elements, where p is a prime. We will denote it by $GF(p^k)$. The number p is called the characteristic of such a field. In practice, there are mostly used \mathbb{Z}_p or $GF(2^k)$. We will be concerned with groups of points on an elliptic curve over \mathbb{Z}_p , but everything can be defined analogously for any field $GF(p^k)$.

Definition

An elliptic curve over a field \mathbb{Z}_p , where p > 3 is prime, is the set of all points $(x, y) \in \mathbb{Z}_p^2$ satisfying the equation:

$$y^2 = x^3 + ax + b,$$

where $a, b \in \mathbb{Z}_p$ and $D = 4a^3 + 27b^2 \neq 0$ in \mathbb{Z}_p .

Let $E(\mathbb{Z}_p)$ denote the set of all these points together with the added point O.

Proposition

The set $E(\mathbb{Z}_p)$ together with the addition introduced arithmetically by the same way as in $E(\mathbb{R})$ forms an abelian group.

Example

The elliptic curve over \mathbb{Z}_{17} is given by $y^2 = x^3 + 7x + 13$. Determine the points on this curve.

For x = 0 we get $y^2 = 13$, where $13^{\frac{p-1}{2}} = 13^8 = 1$ in \mathbb{Z}_{17} , so 13 is a square and we count $y = \pm 8$ by brute force. The points (0, 8), (0, 9) are on the curve.

For x = 3 we get $y^2 = 10$, and $10^{\frac{p-1}{2}} = 10^8 = -1$ in Z_{17} , so 10 is not a square. There is no point (3, y) on the curve.

The group $E(\mathbb{Z}_{17}) = \{(0, 8), (0, 9), (1, 2), (1, 15), (2, 1), (2, 16), (6, 4), (6, 13), (14, 4), (14, 13), (15, 5), (15, 12), O\}$ has 13 elements. $P + Q = (1, 2) + (6, 4) = ((-3)^2 - 1 - 6, -3(1 - r_1) - 2) = (2, 1),$ since $\lambda = 2 \cdot 5^{-1} = -3$ in \mathbb{Z}_{17} .

An estimate of the order of the group $E(\mathbb{Z}_p)$

- $|E(\mathbb{Z}_p)| \leq 2p + 1$, since for every $x \in \mathbb{Z}_p$, $x^3 + ax + b$ has at most two square roots.
- |E(ℤ_p)| ≐ p, since only half of the elements in ℤ_p are squares and the results of x³ + ax + b are roughly uniformly distributed in ℤ_p.
- Hasse's theorem: For every elliptic curve over Z_p, the following holds:

 $|p+1-2\sqrt{p} \le |E(\mathbb{Z}_p)| \le p+1+2\sqrt{p}$

Hasse's theorem also holds for elliptic curves over GF(p^k) when p is replaced by p^k in the estimate.

Structure of the group $E(\mathbb{Z}_p)$

E(Z_p) ≅ Z_{n1} × Z_{n2}, where n₂ | gcd(n₁, p − 1).
 Or, the group is the internal direct sum of two cyclic subgroups of orders n₁ and n₂, so |E(Z_p)| = n₁ · n₂.

• If
$$n_2 = 1$$
, then $E(\mathbb{Z}_p)$ is cyclic.

- If n_2 is small (like 2, 3, 4), then we say $E(\mathbb{Z}_p)$ is almost cyclic.
- The groups of points of elliptic curves over GF(p^k) have the same structure, except that here n₂ | gcd(n₁, p^k 1).

General definition

The general form of the equation for an elliptic curve over a field :

$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

If the characteristic of the field $\neq 2$, the equation can be transformed to the form $y^2 = x^3 + ax^2 + bx + c$. If the characteristic of $\neq 2, 3$ can be obtained as $y^2 = x^3 + ax + b$. For the field $GF(2^k)$, the equation can be modified to $y^2 + xy = x^3 + ax^2 + b$, or to $y^2 + cy = x^3 + ax + b$. Each equation has a different discriminant and different formulas for adding the points of the elliptic curve.

Elliptic curves in cryptography

Diffie-Hellman key establishment

Alice chooses a group of points on an elliptic curve $E(\mathbb{Z}_p)$ and a point A of order n. So, $G = \langle A \rangle$ is a cyclic subgroup of order n.

Then she chooses $x \in \mathbb{Z}_n$ and computes B = xA in $E(\mathbb{Z}_p)$. Alice sends to Bob the element B and informations about the group $(E(\mathbb{Z}_p), n, A)$.

Bob chooses $y \in \mathbb{Z}_n$ and computes C = yA in $E(\mathbb{Z}_p)$. Bob sends to Alice the element C.

Alice computes $S_A = xC$ and Bob computes $S_B = yB$ in $E(\mathbb{Z}_p)$. Both of them have the same secret key $S = S_A = S_B = xyA$.

Analogously, we can use the subgroup $G = \langle A \rangle$ of $E(\mathbb{Z}_p)$ for ElGamal encryption.

Elliptic curves in cryptography

Diffie-Hellman key establishment

Computation time:

- We compute the integer multiple xP of a point P on the elliptic curve E(Z_p) by the repeated doubling algorithm. This requires O(len(n)) additions for x ∈ Z_n. The repeat doubling algorithm is an additive analogue to the repeat squaring algorithm.
- The sum of two points P + Q requires 6 additions,
 3 multiplications, and 1 computing inverse in Z_p. Doubling a point 2 P = P + P requires one more multiplication. This means that one addition in E(Z_p) is about five times slower than one multiplication in Z_p.

Example

The elliptic curve over \mathbb{Z}_{17} is given by $y^2 = x^3 + 7x + 13$.

The group $E(\mathbb{Z}_{17}) = \{(0,8), (0,9), (1,2), (1,15), (2,1), (2,16), (6,4), (6,13), (14,4), (14,13), (15,5), (15,12), 0\}$ has 13 elements, therefore it is cyclic and any element except O is a generator.

Alice and Bob use $E(\mathbb{Z}_{17}) = \langle A = (1,2) \rangle$ of order n = 13.

Alice chooses x = 5 and computes $B = 5 \cdot (1, 2) = (2, 16)$. Bob chooses y = 2 and calculates $C = 2 \cdot (1, 2) = (0, 9)$. The exchanged secret key is $S = 2 \cdot B = (14, 13)$.

Elliptic curves in cryptography

Discrete logarithm problem

Let $G = \langle A \rangle$ of order *n* be a subgroup of the group $E(\mathbb{Z}_p)$. For $B \in G$ we search for $x \in \mathbb{Z}_n$ such that B = xA in $E(\mathbb{Z}_p)$.

- In most groups $E(\mathbb{Z}_p)$, the discrete logarithm problem is an exponential problem with complexity $O(\sqrt{n})$ or $O(\sqrt{q})$, where q is the largest prime in the factorization of n.
- The baby step/giant step algorithm and the Pohling-Hellman algorithm work in groups *E*(ℤ_p), for computing the discrete logarithm (so does Pollard's *ρ*− method). The subexponential index calculus algorithm (SEDL) does not work here.

Elliptic curves in cryptography

Discrete logarithm problem

A different subexponential algorithm is known for groups of so-called supersingular curves, which are curves:
 y² = x³ + ax over a field GF(p^k), where p ≡ −1 (mod 4),
 y² = x³ + b over a field GF(p^k), where p ≡ −1 (mod 3).

Note

We also need to solve the problem of how to convert messages to points on an elliptic curve (message encoding).

Elliptic curves

Literature

- Hankerson, Menezes, Vanstone: Guide to Elliptic Curve Cryptography. Chapters 1. and 3.1 and 4.1.
- Koblitz: A Course in Number Theory and Cryptography. Chapter 6.1-2.