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Elliptic curves over R

Groups of points on elliptic curves play an important role in
modern cryptography. Let us first show elliptic curves over reals
and only in a simplified form as follows:

Definition

An elliptic curve over R is the set of all points (x , y) ∈ R2 satisfying

y2 = x3 + ax + b

where the cubic polynomial x3 + ax + b has only simple roots in C,
which happens just if the discriminant D = 4a3 + 27b2 6= 0.
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Elliptic curves over R

Example
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Elliptic curves over R

Addition of points - geometrically
We can define addition of points on an elliptic curve.
The definition uses symmetry of the curve along the x-axis.

If P 6= Q, then points P and Q determine one line. In most
cases, this line intersects the curve at just one more point.
The sum P + Q is defined to be the point R, which is the
mirror image of this intersection (with respect to the x-axis).

If the line PQ is a tangent to the elliptic curve at a point P
(or Q), then the sum P +Q is defined as the point R which is
the mirror image of the point P (or Q).

If the line PQ is parallel to the y -axis, the sum P + Q is
defined as a point at infinity (denoted O).
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Elliptic curves over R

Addition of points - geometrically
For P = (p1, p2) we denote by −P = (p1,−p2) the point symmetrical
with P with respect to the x-axis.

P + Q = R P + (−P) = O
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Elliptic curves over R

Addition of points - geometrically
If P = Q, then we make a tangent to the elliptic curve at the
point P. This tangent usually intersects the curve at just one
more point. The sum P + P is defined to be the point R,
which is the mirror image of this intersection (with respect to
the x-axis).

If the tangent at P is parallel to the y -axis, the sum P + P is
defined as a point at infinity (denoted by O).

Finally, let’s define O + P = P, P + O = P, O + O = O.
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Elliptic curves over R

Addition of points - geometrically

2P = P + P = R
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Elliptic curves over R

Note
The non-zero discriminant guarantees that the elliptic curve does
not intersect itself and that it does not have a sharp break. In this
case, the sum of two points is uniquely defined for all pairs on the
curve by geometrical constructions.
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Elliptic curves over R

Proposition

Let E (R) be a set of all points at the elliptic curve
y2 = x3 + ax + b, where D = 4a3 + 27b2 6= 0,
along with the point at infinity O. The set E (R) together with the
addition defined geometrically forms an abelian group.
(E (R),+) is called the group of points on an elliptic curve.

Proof: Commutativity is obvious, associativity is more difficult to
verify. The identity element is the point at infinity O, the opposite
element to a point P is the point −P symmetrical with respect to
the x-axis.
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Elliptic curves over R

Addition of points - arithmetically

Let P = (p1, p2), Q = (q1, q2) be points on the elliptic curve

y2 = x3 + ax + b, where D = 4a3 + 27b2 6= 0.

We want to derive the coordinates of the point R = P + Q from
the coordinates of the points P and Q. Let us denote the
coordinations of the point R = (r1, r2).
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Elliptic curves over R

Addition of points - arithmetically

1) Let first P 6= Q (nor −P 6= Q).
The line determined by points P,Q has the equation y = λx + κ,
where λ = q2−p2

q1−p1 (for p1 6= q1), κ = p2 − λp1.

We find the x−coordinate of the intersection of the line and the
given curve (which is r1): (λx + κ)2 = y = x3 + ax + b,

0 = x3 − (λx + κ)2 + ax + b,
where the coefficient by x2 equals to −λ2 = −(p1 + q1 + r1)
(Viet’s formulas for roots). Hence r1 = λ2 − p1 − q1.

The y−coordinate of the intersection of the line and the curve
(which is −r2) is −r2 = λr1 + κ. Hence r2 = λ(p1 − r1)− p2.
If the line PQ was a tangent to the curve at the point P, then we
get R = −P.

Alena Gollová Elliptic curves 12/27



Elliptic curves over R

Addition of points - arithmetically

2) Let P = Q (but p2 6= 0).
By the equation F (x , y) = y2 − x3 − ax − b = 0, a function y(x)
is implicitly defined around the point P (assuming the partial
derivation of F by y is nonzero at the point P). This allows us to
compute the tangent directive to the elliptic curve at the point P
as y ′(x) = 3x2+a

2y (the derivation calculated in the point P).

The tangent to the elliptic curve at point P has the equation
y = λx + κ, where λ =

3p21+a
2p2

(for p2 6= 0), κ = p2 − λp1.

By substituting into the equation of the elliptic curve, we find the
x−coordinate of the intersection of the tangent and the given
curve, r1 = λ2 − 2p1. Then the y−coordinate of the mirror image
of the intersection is r2 = λ(p1 − r1)− p2.
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Elliptic curves over R

Addition of points - arithmetically

Let P = (p1, p2), Q = (q1, q2) be points on the elliptic curve
E : y2 = x3 + ax + b, where D = 4a3 + 27b2 6= 0.
The sum R = P + Q is defined as follows:

If p1 = q1, p2 = −q2, then P +Q = O, where O is a point at
infinity.

P + O = P, O + P = P, O + O = O.

In other cases, P + Q = R = (r1, r2),
where r1 = λ2 − p1 − q1, r2 = λ(p1 − r1)− p2,

λ = q2−p2
q1−p1 if P 6= Q,

λ =
3p21+a
2p2

if P = Q.
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Elliptic curves over Zp

Arithmetically, to add points on an elliptic curve, we need addition
and subtraction, multiplication and division by non-zero numbers
in R. But we can do all this in any field!

Deriving the coordinates of the intersection of the line y = λx + κ
and the curve y2 = x3 + ax + b can be done over any field
(including the formal derivation of polynomials). In doing so, the
x−coordinate of the intersection r1 was the third root of a certain
cubic polynomial, but a cubic polynomial has at most three roots
in any field and Viet’s formulas are valid there.

Finally, we can analogously introduce a group of points on an
elliptic curve over a finite field, where addition will be defined by
the same relations as over R (we will multiply by inverse elements
instead of division).
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Elliptic curves over Zp

Every finite field is isomorphic to a Galois field and has pk

elements, where p is a prime. We will denote it by GF (pk).
The number p is called the characteristic of such a field.

In practice, there are mostly used Zp or GF (2k).

We will be concerned with groups of points on an elliptic curve
over Zp, but everything can be defined analogously for any field
GF (pk).
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Elliptic curves over Zp

Definition
An elliptic curve over a field Zp, where p > 3 is prime, is the set of
all points (x , y) ∈ Z2p satisfying the equation:

y2 = x3 + ax + b,

where a, b ∈ Zp and D = 4a3 + 27b2 6= 0 in Zp.

Let E (Zp) denote the set of all these points together with the
added point O.

Proposition

The set E (Zp) together with the addition introduced arithmetically
by the same way as in E (R) forms an abelian group.
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Elliptic curves over Zp

Example

The elliptic curve over Z17 is given by y2 = x3 + 7x + 13.
Determine the points on this curve.

For x = 0 we get y2 = 13, where 13
p−1
2 = 138 = 1 in Z17,

so 13 is a square and we count y = ±8 by brute force.
The points (0, 8), (0, 9) are on the curve.

For x = 3 we get y2 = 10, and 10
p−1
2 = 108 = −1 in Z17,

so 10 is not a square. There is no point (3, y) on the curve.

The group E (Z17) = {(0, 8), (0, 9), (1, 2), (1, 15), (2, 1), (2, 16),
(6, 4), (6, 13), (14, 4), (14, 13), (15, 5), (15, 12),O} has 13 elements.

P +Q = (1, 2) + (6, 4) = ((−3)2 − 1− 6,−3(1− r1)− 2) = (2, 1),
since λ = 2 · 5−1 = −3 in Z17.
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Elliptic curves over Zp

An estimate of the order of the group E(Zp)

|E (Zp)| ≤ 2p + 1, since for every x ∈ Zp, x3 + ax + b has at
most two square roots.

|E (Zp)|
.
= p, since only half of the elements in Zp are squares

and the results of x3 + ax + b are roughly uniformly
distributed in Zp.

Hasse’s theorem: For every elliptic curve over Zp, the
following holds:
p + 1− 2

√
p ≤ |E (Zp)| ≤ p + 1 + 2

√
p

Hasse’s theorem also holds for elliptic curves over GF (pk)
when p is replaced by pk in the estimate.
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Elliptic curves over Zp

Structure of the group E(Zp)

E (Zp) ∼= Zn1 × Zn2 , where n2 | gcd(n1, p − 1).
Or, the group is the internal direct sum of two cyclic
subgroups of orders n1 and n2, so |E (Zp)| = n1 · n2.
If n2 = 1, then E (Zp) is cyclic.

If n2 is small (like 2, 3, 4), then we say E (Zp) is almost cyclic.

The groups of points of elliptic curves over GF (pk) have the
same structure, except that here n2 | gcd(n1, pk − 1).
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Elliptic curves over Zp

General definition
The general form of the equation for an elliptic curve over a field :

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

If the characteristic of the field 6= 2, the equation can be
transformed to the form y2 = x3 + ax2 + bx + c .
If the characteristic of 6= 2, 3 can be obtained as y2 = x3 + ax + b.

For the field GF (2k), the equation can be modified to
y2 + xy = x3 + ax2 + b, or to y2 + cy = x3 + ax + b.

Each equation has a different discriminant and different formulas
for adding the points of the elliptic curve.
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Elliptic curves in cryptography

Diffie-Hellman key establishment

Alice chooses a group of points on an elliptic curve E (Zp) and a
point A of order n. So, G = 〈A〉 is a cyclic subgroup of order n.

Then she chooses x ∈ Zn and computes B = xA in E (Zp).
Alice sends to Bob the element B and informations about the
group (E (Zp), n,A).

Bob chooses y ∈ Zn and computes C = yA in E (Zp).
Bob sends to Alice the element C .

Alice computes SA = xC and Bob computes SB = yB in E (Zp).
Both of them have the same secret key S = SA = SB = xyA.

Analogously, we can use the subgroup G = 〈A〉 of E (Zp) for
ElGamal encryption.
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Elliptic curves in cryptography

Diffie-Hellman key establishment
Computation time:

We compute the integer multiple xP of a point P on the
elliptic curve E (Zp) by the repeated doubling algorithm.
This requires O(len(n)) additions for x ∈ Zn.
The repeat doubling algorithm is an additive analogue to the
repeat squaring algorithm.

The sum of two points P + Q requires 6 additions,
3 multiplications, and 1 computing inverse in Zp. Doubling
a point 2P = P + P requires one more multiplication.
This means that one addition in E (Zp) is about five times
slower than one multiplication in Zp.
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Elliptic curves over Zp

Example

The elliptic curve over Z17 is given by y2 = x3 + 7x + 13.

The group E (Z17) = {(0, 8), (0, 9), (1, 2), (1, 15), (2, 1), (2, 16),
(6, 4), (6, 13), (14, 4), (14, 13), (15, 5), (15, 12),O} has 13 elements,
therefore it is cyclic and any element except O is a generator.

Alice and Bob use E (Z17) = 〈A = (1, 2)〉 of order n = 13.

Alice chooses x = 5 and computes B = 5 · (1, 2) = (2, 16).
Bob chooses y = 2 and calculates C = 2 · (1, 2) = (0, 9).
The exchanged secret key is S = 2 · B = (14, 13).
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Elliptic curves in cryptography

Discrete logarithm problem

Let G = 〈A〉 of order n be a subgroup of the group E (Zp).
For B ∈ G we search for x ∈ Zn such that B = xA in E (Zp).

In most groups E (Zp), the discrete logarithm problem is an
exponential problem with complexity O(

√
n) or O(

√
q), where

q is the largest prime in the factorization of n.

The baby step/giant step algorithm and the Pohling-Hellman
algorithm work in groups E (Zp), for computing the discrete
logarithm (so does Pollard’s ρ− method).
The subexponential index calculus algorithm (SEDL) does not
work here.
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Elliptic curves in cryptography

Discrete logarithm problem
A different subexponential algorithm is known for groups of
so-called supersingular curves, which are curves:
y2 = x3 + ax over a field GF (pk), where p ≡ −1 (mod 4),
y2 = x3 + b over a field GF (pk), where p ≡ −1 (mod 3).

Note
We also need to solve the problem of how to convert messages to
points on an elliptic curve (message encoding).

Alena Gollová Elliptic curves 26/27

Elliptic curves

Literature
Hankerson, Menezes, Vanstone: Guide to Elliptic Curve
Cryptography. Chapters 1. and 3.1 and 4.1.

Koblitz: A Course in Number Theory and Cryptography.
Chapter 6.1-2.
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