Counting modulo n and its time complexity

Mathematical Cryptography, Lectures 3 - 4

Contents

Counting modulo n

- Exponentiation in Z_n
- Chinese remainder theorem
- Residual arithmetic

2 Time complexity of counting modulo n

- Asymptotic notation
- Basic operations in \mathbb{Z} and in \mathbb{Z}_n
- Euclidean algorithm and residue arithmetic

Exponentiation in \mathbb{Z}_n

We can replace numbers by their remainders when adding or multiplying in \mathbb{Z}_n . Can we also somehow reduce an exponent when exponentiating in \mathbb{Z}_n ?

Results of powers must repeat, because there are only finitely many numbers in \mathbb{Z}_n .

There exist $k > l \in \mathbb{N}$ so that $a^k = a^l$.

If a is invertible in \mathbb{Z}_n , than we get $a^{k-l} = 1$ from it. The powers of a repeat with a period k - l. Is there any common period for all invertible $a \in \mathbb{Z}_n$?

Exponentiation in \mathbb{Z}_n Chinese remainder theorem Residual arithmetic

Euler-Fermat's Theorem

Fermat's little theorem

For every prime p and every $a \not\equiv 0 \pmod{p}$ we have $a^{p-1} \equiv 1 \pmod{p}$.

Euler-Fermat's theorem

For every $a \in \mathbb{Z}_n$, where a is relatively prime to n, we have $a^{\varphi(n)} = 1$ in \mathbb{Z}_n .

It means: If a basis is relatively prime to n, we can reduce an exponent modulo $\varphi(n)$ counting in \mathbb{Z}_n .

Euler-Fermat's Theorem

Euler's phi function

 $\varphi:\mathbb{N}\to\mathbb{N}:\varphi(n)=$ the number of integers between 0 and (n-1) that are relatively prime to n

To calculate the Euler's phi function, we use these formulas:

•
$$\varphi(p) = p - 1$$
 for p prime

•
$$\varphi(p^e) = p^e - p^{e-1} = p^{e-1}(p-1)$$
 for p prime and $e \in \mathbb{N}$

• $\varphi(n \cdot m) = \varphi(n) \cdot \varphi(m)$ in case $n, m \in \mathbb{N}$ are relatively prime

Exercise

1)
$$\varphi(100) = \varphi(2^2 \cdot 5^2) = (4-2) \cdot (25-5) = 40; \ \varphi(1) = 1.$$

If the prime factorization of *n* is known, we can calculate $\varphi(n)$.
2) $5^{64} = 5^4 = 13$ in \mathbb{Z}_{18} because $gcd(5, 18) = 1$ and $\varphi(18) = 6$.

Exponentiation in \mathbb{Z}_n Chinese remainder theorem Residual arithmetic

Euler-Fermat's Theorem

Euler's theorem

Let (G, \circ) be a finite group with *n* elements where 1 is the identity element. For every $a \in G$ we have $a^n = \underbrace{a \circ a \circ \ldots \circ a}_{n-times} = 1$ in *G*.

The Euler-Fermat's theorem is a special case of the Euler's theorem, applied to the group (\mathbb{Z}_n^*, \cdot) of invertible elements in the monoid (\mathbb{Z}_n, \cdot) .

 $\mathbb{Z}_n^* = \{ a \in \mathbb{Z}_n ; a \text{ is relatively prime to } n \}$

The number of elements of the group is $|\mathbb{Z}_n^*| = \varphi(n)$ and the identity element is 1.

Finding inverse elements in \mathbb{Z}_n

Note

The Euler-Fermat's theorem can be used to find an inverse element of a in \mathbb{Z}_n too.

If a is relatively prime to n, then $a^{-1} = a^{\varphi(n)-1}$ in \mathbb{Z}_n .

The repeated squaring algorithm will compute this more quickly.

Note

If *a* is not invertible in \mathbb{Z}_n , then there also exist exponents k > l such that $a^k = a^l$. The powers of an element *a* repeat with a period k - l, but no power equals to 1, i.e. $a^k \neq 1$ in \mathbb{Z}_n for every k > 0. Otherwise, if $a^k = 1$ in \mathbb{Z}_n , then there would exist $a^{-1} = a^{k-1}$.

Repeated squaring algorithm

Repeated squaring algorithm

We compute a^b in \mathbb{Z}_n by successive squaring.

We write the exponent binary: $b = (b_{k-1} \dots b_0)_2$

We create a sequence of commands X= "times *a* in \mathbb{Z}_n ",

S="square in \mathbb{Z}_n "as follows:

We put the S-command between every two ciphers in the binary notation, which creates k slots. We put the X-command in the slot just when 1 is in the corresponding place in the binary notation, otherwise we leave the slot empty.

We start from $a^0 = 1$ and we execute the commands from the left to the right.

Exponentiation in \mathbb{Z}_n Chinese remainder theorem Residual arithmetic

Repeated squaring algorithm

Repeated squaring algorithm

Input: natural numbers a, b, nOutput: a^b in \mathbb{Z}_n Let $b = (b_{k-1} \dots b_0)_2$ be the binary expansion of the exponent b. • $c \leftarrow 1$ • for $i \leftarrow k - 1$ down to 0 do • $c \leftarrow c^2$ in \mathbb{Z}_n • if $b_i = 1$ then $c \leftarrow ca$ in \mathbb{Z}_n

• output c

Repeated squaring algorithm

Exercise

Count 2^{13} in Z_{20} . The number $b = 13 = (1101)_2$ corresponds to the sequence of commands *XSXSSX*. In Z_{20} : $1 \xrightarrow{X} 2 \xrightarrow{S} 4 \xrightarrow{X} 8 \xrightarrow{S} 4 \xrightarrow{S} 16 \xrightarrow{X} 12 = 2^{13}$

Note

The time complexity of the repeated squaring algorithm - it performes at most $2\log_2(b)$ multiplications in \mathbb{Z}_n . The space complexity - it computes with numbers smaller than n^2 .

Chinese remainder theorem

Chinese remainder theorem

Let n_1, \ldots, n_k be a pairwise relatively prime family of natural numbers, and a_1, \ldots, a_k be integers. Then there exists a solution to the system of congruences

$$x \equiv a_i \pmod{n_i}$$
 for all $1 \le i \le k$.

Moreover, any two solutions are congruent modulo $n = \prod_{i=1}^{k} n_i$.

Chinese remainder theorem

Proof

A proof of an existence of a solution gives us a universal guide to solving residue systems, so we explain it here.

First we solve a special residue system for every $1 \le i \le k$,

 $x \equiv 1 \pmod{n_i}$ and $x \equiv 0 \pmod{n_j}$ for any $j \neq i$.

The solution of the *i*-th residue system denoted as q_i could be found as follows:

 $q_i = (\prod_{j \neq i} n_j)t_i$, where $t_i = (\prod_{j \neq i} n_j)^{-1}$ in \mathbb{Z}_{n_i} (due to having a pairwise relatively prime family this inverse element exists) It is easy to see that $a = \sum_{i=1}^k a_i q_i$ solves the given residue system.

Chinese remainder theorem

Exercise

Solve the residue system:

 $x \equiv 2 \pmod{4}, x \equiv 0 \pmod{5}, x \equiv 1 \pmod{9}, x \equiv 2 \pmod{11}$ We use the notation q_{n_i} instead of q_i .

 $q_4 = 5 \cdot 9 \cdot 11 \cdot t$, where *t* is calculated in \mathbb{Z}_4 : $t = (1 \cdot 1 \cdot 3)^{-1} = 3$. Hence $q_4 = 1485$ in \mathbb{Z} . By analogy, calculate the other q_{n_i} , we get $q_4 = 1485$, $q_5 = 396$, $q_9 = 1540$, $q_{11} = 540$. Finally $x = 2q_4 + 0q_5 + 1q_9 + 2q_{11} = 1630$ is the only solution in \mathbb{Z}_{1980} , where $1980 = 4 \cdot 5 \cdot 9 \cdot 11$.

Residue systems in general

In case n_1, \ldots, n_k are not necessarily a pairwise relatively prime family of natural numbers, then the system of equations

$$x \equiv a_i \pmod{n_i}$$
 for all $1 \le i \le k$

may or may not have a solution. If the system has a solution, then any two solutions are congruent modulo $n = lcm(n_1, ..., n_k)$.

Exercise

1) The system $x \equiv 1 \pmod{2}$, $x \equiv 0 \pmod{4}$ has no solution. 2) The system $x \equiv 1 \pmod{2}$, $x \equiv 3 \pmod{4}$, $x \equiv 1 \pmod{5}$ has solutions x = 11 + 20t for each $t \in \mathbb{Z}$. We can found x by solving Diophantine equations obtained from: x = 2k + 1 = 4l + 3 = 5m + 1 for $k, l, m \in \mathbb{Z}$.

Residual arithmetic

Theorem

Let n_1, \ldots, n_k be a pairwise relatively prime family of natural numbers and let $n = \prod_{i=1}^k n_i$. Define the map $\theta : \mathbb{Z}_n \to \mathbb{Z}_{n_1} \times \ldots \times \mathbb{Z}_{n_k} : [a]_n \mapsto ([a]_{n_1}, \ldots, [a]_{n_k})$

- The definition is correct, it does not depend on a choice of the representative of the class [a]_n.
- **2** The map θ is a bijection.
- For all $\alpha, \beta \in \mathbb{Z}_n$, $\theta(\alpha) = (\alpha_1, \ldots, \alpha_k)$, $\theta(\beta) = (\beta_1, \ldots, \beta_k)$, the following holds:

$$\begin{aligned} \theta(\alpha + \beta) &= (\alpha_1 + \beta_1, \dots, \alpha_k + \beta_k), \ \theta(0) = (0, \dots, 0), \\ \theta(-\alpha) &= (-\alpha_1, \dots, -\alpha_k); \\ \theta(\alpha \cdot \beta) &= (\alpha_1 \cdot \beta_1, \dots, \alpha_k \cdot \beta_k), \ \theta(1) = (1, \dots, 1), \\ \alpha \in \mathbb{Z}_n^* \text{ iff every } \alpha_i \in \mathbb{Z}_{n_i}^*. \text{ Then } \theta(\alpha^{-1}) = (\alpha_1^{-1}, \dots, \alpha_k^{-1}). \end{aligned}$$

Residual arithmetic

Notes

 The map θ could be defined over the base representatives of the classes in Z_n, i.e. over the remainders after dividing by n, as follows:

Let n_1, \ldots, n_k be a pairwise relatively prime family of natural numbers, let $n = \prod_{i=1}^k n_i$.

For any $0 \le a < n$, denote its remainder after division by n_i as a_i , so $a \equiv a_i \pmod{n_i}$, $0 \le a_i < n_i$. Then the map

$$\theta:\mathbb{Z}_n\to\mathbb{Z}_{n_1}\times\ldots\mathbb{Z}_{n_k}:a\mapsto(a_1,\ldots,a_k)$$

is the so-called (Chinese) reminder map.

• The previous theorem says that the Chinese reminder map θ is a ring isomorphism, which respects invertible elements.

Residual Arithmetic

Notes

- The restriction of the map θ to the set \mathbb{Z}_n^* is a bijection of the set \mathbb{Z}_n^* to the set $\mathbb{Z}_{n_1}^* \dots \times \mathbb{Z}_{n_k}^*$, which is a group isomorphism.
- If *n*, *m* are relatively prime, then $\varphi(n \cdot m) = \varphi(n) \cdot \varphi(m)$.

Consequence

Let $n = \prod_{i=1}^{k} p_i^{e_i}$, where p_i are distinct primes, so their powers are pairwise relatively prime.

If we want to count in \mathbb{Z}_n , we can count just in the corresponding $\mathbb{Z}_{p_i^{e_i}}$ and then use the Chinese reminder isomorphism.

Residual arithmetic

Residual arithmetic

We want to count numbers in the range $-M \le c < M$, or respectively with numbers in the range $0 \le c < 2M$.

We choose a family of pairwise relatively prime numbers n_1, \ldots, n_k such that $n = \prod_{i=1}^k n_i > 2M$ (just a little larger). We compute the universal coefficients q_i , $1 \le i \le k$ for this family.

We perform all calculations with reminders in each Z_{n_i} and finally the result in Z_n is obtained using the Chinese reminder theorem. If we know that the results are between -M and M, then $M \le c < 2M$ corresponds to $-M \le c - n < 0$.

Residual arithmetic

Exercise

In Z_{1980} , compute $a \cdot b$, a^b , a^{-1} for the numbers a = 31313131313, b = 123456789.

We know that $1980 = 4 \cdot 5 \cdot 9 \cdot 11$, so $\mathbb{Z}_{1980} \cong \mathbb{Z}_4 \times \mathbb{Z}_5 \times \mathbb{Z}_9 \times \mathbb{Z}_{11}$. The q_{n_i} universals for this disjoint set of numbers are $a_4 = 1485, a_5 = 396, a_9 = 1540, a_{11} = 540$ $\theta(a) = (1, 3, 5, 2), \ \theta(b) = (1, 4, 0, 5).$ $\theta(a \cdot b) = (1 \cdot 1, 3 \cdot 4, 5 \cdot 0, 2 \cdot 5) = (1, 2, 0, -1).$ Hence $a \cdot b = 1a_1 + 2a_5 + 0a_0 - 1a_{11} = 1737$ in \mathbb{Z}_{1080} . $\theta(a^b) = (1^b, 3^b, 5^b, 2^b) = (1^1, 3^1, 5^3, 2^9) = (1, 3, -1, 6)$, we have used the Euler-Fermat's theorem in each \mathbb{Z}_{n} . So $a^b = 413$ in \mathbb{Z}_{1980} . $\theta(a^{-1}) = (1^{-1}, 3^{-1}, 5^{-1}, 2^{-1}) = (1, 2, 2, 6)$, so $a^{-1} = 677$ in Z_{1980} .

Residual arithmetic

Divisibility theorems

Let
$$a = \sum_{i=0}^{k} a_i \cdot 10^i$$
, where a_i are digits. Then
• $a \equiv \sum_{i=0}^{k} a_i \pmod{3}$, respectively (mod 9)
• $a \equiv \sum_{i=0}^{k} (-1)^i a_i \pmod{11}$
Let $a = \sum_{i=0}^{k} t_i \cdot 1000^i$, where t_i are triples of digits. T
• $a \equiv \sum_{i=0}^{k} (-1)^i t_i \pmod{7}$, respectively (mod 13)

hen

Asymptotic notation Basic operations in \mathbb{Z} and in \mathbb{Z}_n Euclidean algorithm and residue arithmetic

Asymptotic notation

Definition

Let f and g be real functions and $g(x) \ge 0$ (both functions could be defined and g non-negative only "for all sufficiently large x").

- $f \in O(g)$ when there exist c > 0 and $x_0 \in \mathbb{R}$ such that for all $x \ge x_0$, $|f(x)| \le cg(x)$.
- $f \in \Omega(g)$ when there exist c > 0 and $x_0 \in \mathbb{R}$ such that for all $x \ge x_0$, $f(x) \ge cg(x)$.
- $f \in \Theta(g)$ when there exist c, d > 0 and $x_0 \in \mathbb{R}$ such that for all $x \ge x_0$, $dg(x) \le f(x) \le cg(x)$.

Asymptotic notation Basic operations in \mathbb{Z} and in \mathbb{Z}_n Euclidean algorithm and residue arithmetic

Asymptotic notation

Definition

Let f and g be real functions and $g(x) \ge 0$ (both functions could be defined and g non-negative only "for all sufficiently large x").

- $f \in o(g)$ when for every c > 0 there exists $x_0 \in \mathbb{R}$ such that for all $x \ge x_0$ there is $|f(x)| \le cg(x)$.
- $f \in o(g)$ when $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 0$.

• $f \sim g$ (asymptotically equivalent) when $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 1$.

Asymptotic notation Basic operations in \mathbb{Z} and in \mathbb{Z}_n Euclidean algorithm and residue arithmetic

Number representation

Number length

The length of an integer a is the number of bits in the binary representation of the absolute value |a|, i.e.

•
$$\operatorname{len}(a) = \lfloor \log_2 |a| \rfloor + 1$$
 if $a \neq 0$

•
$$\operatorname{len}(a) = 1$$
 if $a = 0$

Number representation

Large integers representation

Large integers are stored in a computer memory as a vector of words of length len(B) together with a sign bit:

$$a=\pm\sum_{i=0}^{k-1}a_iB^i=\pm(a_{k-1},\ldots,a_0)_B$$

Then len(a) = k len(B) = O(k).

For example, in the languages C or Java for 32-bit computers $B = 2^{15}$ is used for a type Integer.

Basic operations in $\ensuremath{\mathbb{Z}}$

Statement

Let a, b be integers. Suppose that adding two bits or multiplying two bits takes one unit of time.

- $a \pm b$ takes $O(\operatorname{len}(a) + \operatorname{len}(b))$ time.
- $a \cdot b$ takes $O(\operatorname{len}(a) \operatorname{len}(b))$ time.
- If b ≠ 0, a = qb + r, we can find the quotien q and the remainder r in O(len(b) len(q)) time.
 Thus len(a) len(b) 1 ≤ len(q) ≤ len(a) len(b) + 1.
- Multiplying a or dividing a by a power of 2ⁿ takes O(len(a)) time, since it's just shifting bits left or right.

Basic operations in $\ensuremath{\mathbb{Z}}$

Faster multiplication

- A classical algorithms for multiplying two numbers of length l in $O(l^2)$ time is not the fastest one. But it is sufficient for our estimate of time complexity of algorithms (we will have an upper bound of it).
- The Karatsuba's algorithm for multiplying two numbers of length / takes time O(l^{log₂(3)}), while log₂(3) = 1.58.
- When counting with large numbers represented in the $B = 2^{15}$ -ary system, multiplication of two words of length 15 takes place within a single 32-bits word. We can assume that it takes one unit of time. Then the multiplicative constant in the time estimate will be $\frac{1}{B}$ times smaller. The choice of B does not affect theoretical calculation, but it plays an important role in practice.

Basic operations in \mathbb{Z}_n

Statement

Let *a*, *b* be numbers from \mathbb{Z}_n ($0 \le a, b < n$), an exponent $e \in \mathbb{N}$. We perform operations in \mathbb{Z}_n and a result should be in the range $0 \le c < n$.

- $a \pm b$ is computed in time $O(\operatorname{len}(n))$.
- $a \cdot b$ is computed in time $O(\operatorname{len}(n)^2)$.
- a^e is computed in time $O(\operatorname{len}(e)\operatorname{len}(n)^2)$ by the repeated squaring algorithm.
- If gcd(a, n) = 1, then a^e is computed in time $O(len(e) len(n) + len(n)^3)$ by the repeated squaring algorithm after using the Euler-Fermat's theorem.
- If gcd(a, n) = 1, then a^{-1} in \mathbb{Z}_n is computed in time $O(len(n)^3)$ using the repeated squaring algorithm.

Time complexity of Euclidean algorithm

The Euclidean algorithm computes gcd(a, b), where $a \ge b > 0$.

- The number of divisions with remainder is $O(\operatorname{len}(b))$.
- The rough estimate of the total time is $O(\operatorname{len}(b)^2 \operatorname{len}(a))$.
- Moreover it can be proved that the Euclidean algorithm only needs O(len(b)len(a)) time.

The extended Euclidean algorithm computes gcd(a, b) together with $s, t \in \mathbb{Z}$ such that sa + tb = gcd(a, b).

- The extended Euclidean algorithm needs $O(\operatorname{len}(b)\operatorname{len}(a))$ time.
- If gcd(a, n) = 1, then a⁻¹ in Z_n is computed in time O(len(n)²) by the extended Euclidean algorithm.

Time complexity of residual arithmetic

We count with integers a, b and we expect results in the range from -M to M, or from 0 to 2M respectively.

- We choose a set of "small" pairwise relatively prime numbers, usually primes p₁,..., p_k such that n = ∏^k_{i=1} p_i > 2M. Say all primes p_i < 2^C, where C is a constant. We will count residually using the Chinese reminder theorem.
- The universal coefficients q_i, 1 ≤ i ≤ k, for the Chinese remainder theorem can be computed in time O(len(n)²), and len(q_i) ≃ len(n). But of course, we calculate these coefficients only once!

Time complexity of residual arithmetic

- Reminders a_i, b_i of numbers a, b modulo each p_i, 1 ≤ i ≤ k, are computed in time O(C len(n)) = O(len(n)).
- Arithmetic operations in Z_{pi} take a constant time: a_i ± b_i, a_i ⋅ b_i, or a^r_i, a⁻¹_i, if gcd(a_i, n) = 1, r < p_i, are computed in a time at most O(C³) = O(1) in each Z_{pi}.
- A solution of the corresponding residue systems for a ± b, a ⋅ b, or a^s, a⁻¹ in Z_n, if gcd(a, n) = 1, contains in counting a corresponding linear combination of the coefficients q_i performed in Z_n which takes time O(kC len(n)) = O(len(n)).
- Residual counting (with precomputed q_i's) works in a linear time with the multiplicative constant k (because C is small).

Time complexity of residual arithmetic

Example

The product of all primes smaller than 2^{16} is approximately $2^{90\ 000}$. We can residually multiply numbers which have less than 45 000 bits in a linear time.

An estimate for a multiplicative constant: there is $k \doteq 5000$ primes up to 2¹⁶, multiplying remainders within a 32-bit word takes a unit of time. So it is roughly 9 times faster than a quadratic time.

Time complexity of counting modulo n

Literature

- Velebil: Discrete mathematics. Chapter 3.4. ftp://math.feld.cvut.cz/pub/velebil/y01dma/dma-notes.pdf
- Shoup: A Computational Introduction to Number Theory and Algebra. Chapters 2.4-7, 3.1-4, 4.1-4. http://shoup.net/ntb/