
Counting modulo n
and its time complexity

Mathematical Cryptography,
Lectures 3 - 4

Alena Gollova Time complexity of counting modulo n 1/32

Contents

1 Counting modulo n
Exponentiation in Zn

Chinese remainder theorem
Residual arithmetic

2 Time complexity of counting modulo n
Asymptotic notation
Basic operations in Z and in Zn

Euclidean algorithm and residue arithmetic

Alena Gollova Time complexity of counting modulo n 2/32

Exponentiation in Zn

We can replace numbers by their remainders when adding or
multiplying in Zn. Can we also somehow reduce an exponent when
exponentiating in Zn?

Results of powers must repeat, because there are only finitely
many numbers in Zn.

There exist k > l ∈ N so that ak = al .

If a is invertible in Zn, than we get ak−l = 1 from it. The powers
of a repeat with a period k − l .
Is there any common period for all invertible a ∈ Zn?
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Euler-Fermat’s Theorem

Fermat’s little theorem

For every prime p and every a 6≡ 0 (mod p) we have
ap−1 ≡ 1 (mod p).

Euler-Fermat’s theorem

For every a ∈ Zn, where a is relatively prime to n, we have
aϕ(n) = 1 in Zn.

It means: If a basis is relatively prime to n, we can reduce an
exponent modulo ϕ(n) counting in Zn.

Alena Gollova Time complexity of counting modulo n 4/32



Euler-Fermat’s Theorem

Euler’s phi function

ϕ : N→ N : ϕ(n) = the number of integers between 0 and (n− 1)
that are relatively prime to n

To calculate the Euler’s phi function, we use these formulas:

ϕ(p) = p − 1 for p prime

ϕ(pe) = pe − pe−1 = pe−1(p − 1) for p prime and e ∈ N
ϕ(n ·m) = ϕ(n) · ϕ(m) in case n,m ∈ N are relatively prime

Exercise

1) ϕ(100) = ϕ(22 · 52) = (4− 2) · (25− 5) = 40; ϕ(1) = 1.
If the prime factorization of n is known, we can calculate ϕ(n).

2) 564 = 54 = 13 in Z18 because gcd(5, 18) = 1 and ϕ(18) = 6.
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Euler-Fermat’s Theorem

Euler’s theorem

Let (G , ◦) be a finite group with n elements where 1 is the identity
element. For every a ∈ G we have an = a ◦ a ◦ . . . ◦ a︸ ︷︷ ︸

n-times

= 1 in G .

The Euler-Fermat’s theorem is a special case of the Euler’s
theorem, applied to the group (Z∗n, ·) of invertible elements in the
monoid (Zn, ·).

Z
∗
n = {a ∈ Zn; a is relatively prime to n}

The number of elements of the group is |Z∗n| = ϕ(n) and the
identity element is 1.
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Finding inverse elements in Zn

Note

The Euler-Fermat’s theorem can be used to find an inverse element
of a in Zn too.

If a is relatively prime to n, then a−1 = aϕ(n)−1 in Zn.

The repeated squaring algorithm will compute this more quickly.

Note

If a is not invertible in Zn, then there also exist exponents k > l
such that ak = al . The powers of an element a repeat with a period
k − l , but no power equals to 1, i.e. ak 6= 1 in Zn for every k > 0.
Otherwise, if ak = 1 in Zn, then there would exist a−1 = ak−1.
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Repeated squaring algorithm

Repeated squaring algorithm

We compute ab in Zn by successive squaring.

We write the exponent binary: b = (bk−1 . . . b0)2
We create a sequence of commands X=”times a in Zn”,
S=”square in Zn”as follows:
We put the S-command between every two ciphers in the binary
notation, which creates k slots. We put the X -command in the slot
just when 1 is in the corresponding place in the binary notation,
otherwise we leave the slot empty.
We start from a0 = 1 and we execute the commands from the left
to the right.
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Repeated squaring algorithm

Repeated squaring algorithm

Input: natural numbers a, b, n
Output: ab in Zn

Let b = (bk−1 . . . b0)2 be the binary expansion of the exponent b.

c ← 1

for i ← k − 1 down to 0 do

c ← c2 in Zn

if bi = 1 then c ← ca in Zn

output c
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Repeated squaring algorithm

Exercise

Count 213 in Z20.
The number b = 13 = (1101)2 corresponds to the sequence of
commands XSXSSX .

In Z20: 1
X−→ 2

S−→ 4
X−→ 8

S−→ 4
S−→ 16

X−→ 12 = 213

Note

The time complexity of the repeated squaring algorithm - it
performes at most 2 log2(b) multiplications in Zn.
The space complexity - it computes with numbers smaller than n2.
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Chinese remainder theorem

Chinese remainder theorem

Let n1, . . . , nk be a pairwise relatively prime family of natural
numbers, and a1, . . . , ak be integers. Then there exists a solution
to the system of congruences

x ≡ ai (mod ni ) for all 1 ≤ i ≤ k .

Moreover, any two solutions are congruent modulo n =
∏k

i=1 ni .
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Chinese remainder theorem

Proof

A proof of an existence of a solution gives us a universal guide to
solving residue systems, so we explain it here.

First we solve a special residue system for every 1 ≤ i ≤ k,
x ≡ 1 (mod ni ) and x ≡ 0 (mod nj) for any j 6= i .

The solution of the i−th residue system denoted as qi could be
found as follows:

qi = (
∏

j 6=i nj)ti , where ti = (
∏

j 6=i nj)
−1 in Zni (due to having a

pairwise relatively prime family this inverse element exists)

It is easy to see that a =
∑k

i=1 aiqi solves the given residue system.
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Chinese remainder theorem

Exercise

Solve the residue system:
x ≡ 2 (mod 4), x ≡ 0 (mod 5), x ≡ 1 (mod 9), x ≡ 2 (mod 11)
We use the notation qni instead of qi .

q4 = 5 · 9 · 11 · t, where t is calculated in Z4: t = (1 · 1 · 3)−1 = 3.
Hence q4 = 1485 in Z. By analogy, calculate the other qni ,
we get q4 = 1485, q5 = 396, q9 = 1540, q11 = 540.

Finally x = 2q4 + 0q5 + 1q9 + 2q11 = 1630 is the only solution in
Z1980, where 1980 = 4 · 5 · 9 · 11.
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Residue systems in general

In case n1, . . . , nk are not necessarily a pairwise relatively prime
family of natural numbers, then the system of equations

x ≡ ai (mod ni ) for all 1 ≤ i ≤ k

may or may not have a solution. If the system has a solution, then
any two solutions are congruent modulo n = lcm(n1, . . . , nk).

Exercise

1) The system x ≡ 1 (mod 2), x ≡ 0 (mod 4) has no solution.

2) The system x ≡ 1 (mod 2), x ≡ 3 (mod 4), x ≡ 1 (mod 5) has
solutions x = 11 + 20t for each t ∈ Z.
We can found x by solving Diophantine equations obtained from:
x = 2k + 1 = 4l + 3 = 5m + 1 for k , l ,m ∈ Z.
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Residual arithmetic

Theorem

Let n1, . . . , nk be a pairwise relatively prime family of natural
numbers and let n =

∏k
i=1 ni . Define the map

θ : Zn → Zn1 × . . .× Znk : [a]n 7→ ([a]n1 , . . . , [a]nk )

1 The definition is correct, it does not depend on a choice of
the representative of the class [a]n.

2 The map θ is a bijection.

3 For all α, β ∈ Zn, θ(α) = (α1, . . . , αk), θ(β) = (β1, . . . , βk),
the following holds:
θ(α + β) = (α1 + β1, . . . , αk + βk), θ(0) = (0, . . . , 0),
θ(−α) = (−α1, . . . ,−αk);
θ(α · β) = (α1 · β1, . . . , αk · βk), θ(1) = (1, . . . , 1),
α ∈ Z∗n iff every αi ∈ Z∗ni . Then θ(α−1) = (α−11 , . . . , α−1k ).
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Residual arithmetic

Notes

The map θ could be defined over the base representatives of
the classes in Zn, i.e. over the remainders after dividing by n,
as follows:

Let n1, . . . , nk be a pairwise relatively prime family of natural
numbers, let n =

∏k
i=1 ni .

For any 0 ≤ a < n, denote its remainder after division by ni
as ai , so a ≡ ai (mod ni ), 0 ≤ ai < ni . Then the map

θ : Zn → Zn1 × . . .Znk : a 7→ (a1, . . . , ak)

is the so-called (Chinese) reminder map.

The previous theorem says that the Chinese reminder map θ is
a ring isomorphism, which respects invertible elements.
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Residual Arithmetic

Notes

The restriction of the map θ to the set Z∗n is a bijection of the
set Z∗n to the set Z∗n1 . . . . . .× Z

∗
nk

, which is a group
isomorphism.

If n, m are relatively prime, then ϕ(n ·m) = ϕ(n) · ϕ(m).

Consequence

Let n =
∏k

i=1 p
ei
i , where pi are distinct primes, so their powers are

pairwise relatively prime.
If we want to count in Zn, we can count just in the corresponding
Zp

ei
i

and then use the Chinese reminder isomorphism.
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Residual arithmetic

Residual arithmetic

We want to count numbers in the range −M ≤ c < M, or
respectively with numbers in the range 0 ≤ c < 2M.

We choose a family of pairwise relatively prime numbers n1, . . . , nk
such that n =

∏k
i=1 ni > 2M (just a little larger). We compute the

universal coefficients qi , 1 ≤ i ≤ k for this family.

We perform all calculations with reminders in each Zni and finally
the result in Zn is obtained using the Chinese reminder theorem.
If we know that the results are between −M and M, then
M ≤ c < 2M corresponds to −M ≤ c − n < 0.
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Residual arithmetic

Exercise

In Z1980, compute a · b, ab, a−1 for the numbers
a = 31313131313, b = 123456789.

We know that 1980 = 4 · 5 · 9 · 11, so Z1980
∼= Z4 ×Z5 ×Z9 ×Z11.

The qni universals for this disjoint set of numbers are
q4 = 1485, q5 = 396, q9 = 1540, q11 = 540.

θ(a) = (1, 3, 5, 2), θ(b) = (1, 4, 0, 5).

θ(a · b) = (1 · 1, 3 · 4, 5 · 0, 2 · 5) = (1, 2, 0,−1).
Hence a · b = 1q4 + 2q5 + 0q9 − 1q11 = 1737 in Z1980.

θ(ab) = (1b, 3b, 5b, 2b) = (11, 31, 53, 29) = (1, 3,−1, 6), we have
used the Euler-Fermat’s theorem in each Zni . So ab = 413 in Z1980.

θ(a−1) = (1−1, 3−1, 5−1, 2−1) = (1, 2, 2, 6), so a−1 = 677 in Z1980.
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Residual arithmetic

Divisibility theorems

Let a =
∑k

i=0 ai · 10i , where ai are digits. Then

a ≡
∑k

i=0 ai (mod 3), respectively (mod 9)

a ≡
∑k

i=0(−1)iai (mod 11)

Let a =
∑k

i=0 ti · 1000i , where ti are triples of digits. Then

a ≡
∑k

i=0(−1)i ti (mod 7), respectively (mod 13)
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Asymptotic notation

Definition

Let f and g be real functions and g(x) ≥ 0 (both functions could
be defined and g non-negative only ”for all sufficiently large x”).

f ∈ O(g) when there exist c > 0 and x0 ∈ R such that for all
x ≥ x0, |f (x)| ≤ cg(x).

f ∈ Ω(g) when there exist c > 0 and x0 ∈ R such that for all
x ≥ x0, f (x) ≥ cg(x).

f ∈ Θ(g) when there exist c , d > 0 and x0 ∈ R such that for
all x ≥ x0, dg(x) ≤ f (x) ≤ cg(x).

Alena Gollova Time complexity of counting modulo n 21/32

Asymptotic notation

Definition

Let f and g be real functions and g(x) ≥ 0 (both functions could
be defined and g non-negative only ”for all sufficiently large x”).

f ∈ o(g) when for every c > 0 there exists x0 ∈ R such that
for all x ≥ x0 there is |f (x)| ≤ cg(x).

f ∈ o(g) when limx→∞
f (x)
g(x) = 0.

f ∼ g (asymptotically equivalent) when limx→∞
f (x)
g(x) = 1.
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Number representation

Number length

The length of an integer a is the number of bits in the binary
representation of the absolute value |a|, i.e.

len(a) = blog2 |a|c+ 1 if a 6= 0

len(a) = 1 if a = 0
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Number representation

Large integers representation

Large integers are stored in a computer memory as a vector of
words of length len(B) together with a sign bit:

a = ±
k−1∑
i=0

aiB
i = ±(ak−1, . . . , a0)B

Then len(a) = k len(B) = O(k).

For example, in the languages C or Java for 32−bit computers
B = 215 is used for a type Integer .
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Basic operations in Z

Statement

Let a, b be integers. Suppose that adding two bits or multiplying
two bits takes one unit of time.

a± b takes O(len(a) + len(b)) time.

a · b takes O(len(a) len(b)) time.

If b 6= 0, a = qb + r , we can find the quotien q and the
remainder r in O(len(b) len(q)) time.
Thus len(a)− len(b)− 1 ≤ len(q) ≤ len(a)− len(b) + 1.

Multiplying a or dividing a by a power of 2n takes O(len(a))
time, since it’s just shifting bits left or right.
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Basic operations in Z

Faster multiplication

A classical algorithms for multiplying two numbers of length l
in O(l2) time is not the fastest one. But it is sufficient for our
estimate of time complexity of algorithms (we will have an
upper bound of it).

The Karatsuba’s algorithm for multiplying two numbers of
length l takes time O(l log2(3)), while log2(3)

.
= 1.58.

When counting with large numbers represented in the
B = 215−ary system, multiplication of two words of length 15
takes place within a single 32−bits word. We can assume that
it takes one unit of time. Then the multiplicative constant in
the time estimate will be 1

B times smaller. The choice of B
does not affect theoretical calculation, but it plays an
important role in practice.
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Basic operations in Zn

Statement

Let a, b be numbers from Zn (0 ≤ a, b < n), an exponent e ∈ N.
We perform operations in Zn and a result should be in the range
0 ≤ c < n.

a± b is computed in time O(len(n)).

a · b is computed in time O(len(n)2).

ae is computed in time O(len(e) len(n)2) by the repeated
squaring algorithm.

If gcd(a, n) = 1, then ae is computed in time
O(len(e) len(n) + len(n)3) by the repeated squaring algorithm
after using the Euler-Fermat’s theorem.

If gcd(a, n) = 1, then a−1 in Zn is computed in time
O(len(n)3) using the repeated squaring algorithm.
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Time complexity of Euclidean algorithm

The Euclidean algorithm computes gcd(a, b), where a ≥ b > 0.

The number of divisions with remainder is O(len(b)).

The rough estimate of the total time is O(len(b)2 len(a)).

Moreover it can be proved that the Euclidean algorithm only
needs O(len(b) len(a)) time.

The extended Euclidean algorithm computes gcd(a, b) together
with s, t ∈ Z such that sa + tb = gcd(a, b).

The extended Euclidean algorithm needs O(len(b) len(a))
time.

If gcd(a, n) = 1, then a−1 in Zn is computed in time
O(len(n)2) by the extended Euclidean algorithm.
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Time complexity of residual arithmetic

We count with integers a, b and we expect results in the range
from −M to M, or from 0 to 2M respectively.

We choose a set of ”small”pairwise relatively prime numbers,
usually primes p1, . . . , pk such that n =

∏k
i=1 pi > 2M.

Say all primes pi < 2C , where C is a constant.
We will count residually using the Chinese reminder theorem.

The universal coefficients qi , 1 ≤ i ≤ k , for the Chinese
remainder theorem can be computed in time O(len(n)2), and
len(qi ) ' len(n). But of course, we calculate these coefficients
only once!
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Time complexity of residual arithmetic

Reminders ai , bi of numbers a, b modulo each pi , 1 ≤ i ≤ k ,
are computed in time O(C len(n)) = O(len(n)).

Arithmetic operations in Zpi take a constant time: ai ± bi ,
ai · bi , or ari , a−1i , if gcd(ai , n) = 1, r < pi , are computed in a
time at most O(C 3) = O(1) in each Zpi .

A solution of the corresponding residue systems for a± b,
a · b, or as , a−1 in Zn, if gcd(a, n) = 1, contains in counting a
corresponding linear combination of the coefficients qi
performed in Zn which takes time O(kC len(n)) = O(len(n)).

Residual counting (with precomputed qi ’s) works in a linear
time with the multiplicative constant k (because C is small).
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Time complexity of residual arithmetic

Example

The product of all primes smaller than 216 is approximately 290 000.
We can residually multiply numbers which have less than 45 000
bits in a linear time.
An estimate for a multiplicative constant: there is k

.
= 5000 primes

up to 216, multiplying remainders within a 32−bit word takes a
unit of time. So it is roughly 9 times faster than a quadratic time.
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Time complexity of counting modulo n
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