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Groups and abelian groups

Definition
A set G with a binary operation ∗ forms a group, in case the
operation ∗ is associative, has an identity element, and every
element has an inverse.

Moreover, if a group operation is commutative, we speak
about a commutative group or an abelian group.

Examples

(Zn,+) is an abelian group of order n (additive group)

(Zn, ·) is not a group, at least 0 has no inverse

(Z∗n, ·) is the abelian group of order ϕ(n) (multiplicative
group)

The number of elements of a group is called the order of the group.
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Additive and multiplicative notation

Additive notation: (G ,+, 0,−(·))
the operation is +, the zero element 0, the opposite element
to a is −a;
iterated addition gives a multiple a + a + . . .+ a︸ ︷︷ ︸

k times

= ka

Multiplicative notation: (G , ·, 1, (·)−1)
the operation ·, the identity element 1, the inverse of a is a−1;
iterated multiplication gives a power a · a · . . . · a︸ ︷︷ ︸

k times

= ak

Note: We will use multiplicative notation mostly.
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Powers of elements
Let (G , ·) be a group with the identity element 1, a ∈ G , k ∈ Z.
We define an integer power of the element a as follows:

for k > 0 is ak = a · a · . . . · a︸ ︷︷ ︸
k times

(due to associativity)

a0 = 1 (due to the identity element)

for k < 0, ak = (a−1)|k| (due to the inverse of a)

Proposition

Well-known formulas hold: ak+l = akal , (ak)l = akl

Moreover, in an abelian group: (ab)k = akbk
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Proposition

Let (G , ·) be a group.

The identity element is uniquely determined.
If e is the left identity element and f is the right identity
element, then e = f is the identity element.

The inverse element of a is uniquely determined.
If b is the left inverse of a, c the right inverse of a,
then b = c is the inverse of a.

Socks and shoes lemma:
In a (non-commutative) group, (ab)−1 = b−1a−1.
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Proposition

Let (G , ·) be a group.

The cancellation law holds in the group G , i.e. for every
a ∈ G : if a · x = a · y , then x = y .
This property does not characterize groups: in (Z, ·) one can
also cancel with any element, even though it is not a group.

All linear equations a · x = b, y · a = b have a solution in the
group G , and this solution is unique.
This property characterizes groups: every semigroup in which
all linear equations have a solution already is a group.

A left translation by an element of a ∈ G , the map
la : G → G : x 7→ a · x , is a bijection.
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Rings and fields

Remark
(R,+, ·) is called ring in case (R,+) is a commutative group,
(R, ·) is a semigroup, and both distributive laws hold.
A nontrivial ring with unity is called a domain if the
cancellation law holds for any nonzero element.
A non-trivial ring is a field if (R − {0}, ·) is a group.

A non-trivial ring is a field if and only if all linear equations
a · x = b, y · a = b, where a 6= 0, have a solution.

Every finite domain is a field, because an injection la is a
mapping from a finite set to itself, so it must be a bijection.
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Definition
If G1, . . . ,Gk are groups, then the set G1 × . . .× Gk of all
k−tuples together with the operation defined component-wise (in
the i ′th component one counts as in Gi ) is also a group. It is called
the direct product of the groups G1, . . . ,Gk .
If all groups are equal, Gi = G for 1 ≤ i ≤ k, we speak of the
direct power of G and we denote it by G×k .

Remark
The direct product of groups was used in the Chinese remainder
theorem. For example, Z15 ' Z3 × Z5.
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Definition

A subset H of the group (G , ·, 1, (·)−1) forms an subgroup if for
every a, b ∈ G the following holds:

if a, b ∈ H, then ab ∈ H

1 ∈ H

if a ∈ H, then a−1 ∈ H

It means, a subgroup is a subset of the group, which is closed to
the binary operation, to the identity element and all inverse
elements.
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Proposition

Let G be a group and ∅ 6= H ⊆ G . The following statements are
equivalent:

H is a subgroup in G

for all a, b ∈ G : if a, b ∈ H, then ab ∈ H and a−1 ∈ H

for all a, b ∈ G : if a, b ∈ H, then ab−1 ∈ H

Proposition
Let H1, H2 be subgroups in the group G .

H1 ∩ H2 is a subgroup in G .

If, moreover, G is abelian, then
H1 · H2 = {h1h2; h1 ∈ H1, h2 ∈ H2} is a subgroup in G .
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Examples
Let G be a group.

Obviously {1} and G are subgroups of the group G .

The set of all integer powers of the element a ∈ G ,
M = {ak , k ∈ Z} is a subgroup of G . We call it the cyclic
subgroup generated by a, we denote it by 〈a〉.

In the additive group (G ,+), the cyclic group 〈a〉 is the set of all
integer multiples of the element a ∈ G .
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Subgroups in Z and in Zn

Proposition

Every subgroup in (Z,+) is of the form mZ for some m ∈ Z.
Moreover: m1Z ⊆ m2Z just when m2 | m1.

Proposition

Every subgroup in (Zn,+) is of the form dZn for some d ∈ Z,
where d | n.
Moreover: d1Zn ⊆ d2Zn just when d2 | d1.

Thus, every subgroup of (Zn,+) is cyclic.
For each divisor d of n there is one subgroup of the form dZn.
This subgroup has nd elements.

.
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Definition
Let G be a group, H a subgroup of G , a ∈ G .
The left coset of the subgroup H determined by an element a
is the set aH = {ah, h ∈ H}.
The right coset Ha is defined analogously.

Remark
If G is an abelian group, then aH = Ha (and we denote it as [a]H)
for every a ∈ G .
The number of different cosets of H in G is called the index of the
subgroup H in the group G , and denoted [G : H].
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Proposition

For every a ∈ G , |aH| = |H|.
All left cosets form a partition on the set G , i.e.
G =

⋃
a∈G aH, and aH, bH are either the same or disjunctive.

Lagrange’s theorem
Let G be a finite group and H a subgroup of G .
The order of the subgroup H divides the order of the group G ,
more precisely |G | = [G : H] · |H|.

Remark
For subsemigroups of a finite semigroup, something similar does
not hold. For example, in the semigroup of left zeros, every subset
forms a subsemigroup.
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Proposition
Let G be an abelian group and H be a subgroup in G .

The prescription aH · bH = abH correctly defines an operation
on cosets. (Due to commutativity, the result does not depend
on the choice of cosets representatives.)

The set of all cosets of H in G together with this operation
again forms a group. It is called the quotient group of G
modulo H and is denoted by G/H.

Remark
The noncommutative group G can be factorized only modulo a
normal subgroup H, for which aH = Ha holds for all a ∈ G .
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Example

(Z/nZ,+) = (Zn,+)
Let us remind that Zn was previously made through factoring by
congruence modulo n, where a ≡ b (mod n) in case n | a− b, or
equivalently a− b ∈ nZ.

Definition
Let G be an abelian group, H a subgroup in G , a, b ∈ G .
We say that a is congruent with b modulo the subgroup H,
a ≡ b (mod H) in case ab−1 ∈ H.

Claim
The following statements are equivalent.
a ≡ b (mod H) iff Ha = Hb iff a = hb for some h ∈ H.
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Proposition
The congruence modulo a subgroup is an equivalence relation
on the set G , so it splits G into classes, and these classes are
exactly the cosets aH, for a ∈ G . (This holds for all groups.)

The congruence modulo a subgroup is preserved by the binary
operation (this applies only to abelian groups), so we can
define a binary operation on classes via representatives.

This constructs a factor group of the group G by congruence
modulo H, which is exactly the quotient group G/H.

For non-commutative groups, one can only introduce the
congruence modulo a normal subgroup.
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Quotient domain modulo an ideal

Remark
Let (R,+, ·) be a commutative ring. The subset I ⊂ R is
called the ideal of the ring R in case

(I ,+) is a subgroup of (R,+),
for all r ∈ R and all i ∈ I holds r · i ∈ I .

If we want to create a commutative quotien ring, we must
count modulo an ideal, so that addition and multiplication on
cosets can be defined correctly via representatives.

Each ideal in Z is of the form mZ for some m ∈ Z.
The quotient ring modulo an ideal mZ is just
(Z/mZ,+, ·) = (Zm,+, ·) the factor ring of residue classes
modulo m.
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Definition
Let (G1, ·) and (G2, ◦) be groups.
A map f : G1 → G2 is called the group homomorphism in case
for all a, b ∈ G1 the following holds:

f (a · b) = f (a) ◦ f (b)

f (1) = 1

f (a−1) = f (a)−1

Proposition

Let (G1, ·) and (G2, ◦) be groups.
A map f : G1 → G2 is the group homomorphism, if and only if
for all a, b ∈ G1 holds f (a · b) = f (a) ◦ f (b).
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Examples
For any groups G1 and G2, the map f : G1 → G2 : a 7→ 1
is a group homomorphism.

Let H be a subgroup of the group G .
The embedding i : H → G : h 7→ h, and the natural projection
π : G → G/H : a 7→ aH are group homomorphisms.

For any group G and for any a ∈ G , the integer
exponentiation map f : (Z ,+)→ G : z 7→ az is a group
homomorphism.

For any abelian group G , the m−th power map on G ,
ρ : G → G : a 7→ am is a group homomorphism.
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Definition
Let (G1, ·) and (G2, ◦) be groups.
A group homomorphism f : G1 → G2, which is a bijection too, is
called the group isomorphism.

Proposition

Let n =
∏k
i=1 peii , where the primes pi are different.

The reminder map θ : Zn → Zpe11
. . . . . .× Zpekk : a 7→ (a1, . . . , ak),

where 0 ≤ ai < peii satisfy a ≡ ai (mod peii ), is a group
isomorphism of additive groups: Zn ∼=

∏k
i=1 Zpeii

The restriction of θ to the set Z∗n is a group isomorphism of
multiplicative groups: Z∗n ∼= Z

∗
pe11
. . .× Z∗

p
ek
k
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Remark
Let (R1,+, ·), (R2,+, ·) be commutative rings with unit.
A map f : R1 → R2 is called the ring homomorphism, in case
it is a group homomorphism of additive groups and it respects
multiplication and the identity element.

A map f is a ring homomorphism iff for all a, b ∈ R1,
f (a + b) = f (a) + f (b), f (a · b) = f (a) · f (b), f (1) = 1.

The Chinese reminder map θ is a ring isomorphism.

Alena Gollova Abelian groups 23/29



Groups and abelian groups
Subgroups

Group homomorphisms

Group isomorphisms

Proposition
Let G be an abelian group, H1, H2 its subgroups.
If H1 ∩ H2 = 1, then H1 × H2 ∼= H1 · H2, where the map
f : H1 × H2 → H1 · H2 : (h1, h2) 7→ h1h2 is a group isomorphism.

Definition
Let G be an abelian group, H1, H2 its subgroups.
If G = H1 · H2 and H1 ∩ H2 = 1, then the group G is called the
internal direct product of the subgroups H1 and H2.
We denote it by G = H1×̇H2.

In this case, every element g ∈ G can be written uniquely in the
form g = h1h2 for some h1 ∈ H1, h2 ∈ H2.
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Definition
Let f : G1 → G2 be a group homomorphism.

The image of f is the set
Im f = {b ∈ G2; b = f (a) for some a ∈ G1}.
The kernel of f is the set Ker f = {a ∈ G1; f (a) = 1}.

Proposition
Let f : G1 → G2 be a group homomorphism.

Ker f is a subgroup of the group G1 (even a normal subgroup).

Im f is a subgroup of the group G2.

The image of a subgroup is a subgroup too and the preimage
of a subgroup is a subgroup too.

f is injective, if and only if Ker f = {1}.
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The first isomorphism theorem

Let f : G → G ′ be a group homomorphism.
Then G/Ker f ∼= Im f .
Specially, the map ϕ : G/Ker f → G ′ : a Ker f 7→ f (a)
is an injecvite group homomorphism whose image is Im f .

So it holds, that ϕ ◦ π = f where π is the natural projection and
the operation ◦ is the composition of mappings.

Remark

Let f : R → R ′ be a ring homomorphism, then R/Ker f ∼= Im f .
Here, the quotient ring R/Ker f can be constructed because Ker f
always is an ideal in R.

Alena Gollova Abelian groups 26/29



Groups and abelian groups
Subgroups

Group homomorphisms

Group homomorphisms

Consequence

Let f : G → G ′ be a group (a ring) homomorphism.
Then each element b ∈ Im f has the same number of preimages.

If the element a is one of preimages of b, then the equation
f (x) = b is solved by all elements of the coset a Ker f .

Each solution has a form x = ac , where c ∈ Ker f solves the
equation f (x) = 1.

This fact (in its additive form) is well known from solving systems
of linear equations.
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m−th powers and roots
Let G be an abelian group, then the power map
ρ : G → G : a 7→ am is a group homomorphism.

Ker ρ = {a ∈ G , am = 1} = G
m
√

1 (the set of all m-th roots
of 1) is a subgroup of G .

Im ρ = {am, a ∈ G} = Gm (the set of all m-th powers
of elements of G ) is a subgroup of G .

G/Ker ρ ' Im ρ, where the corresponding isomorphism is
ϕ : aKerρ 7→ am.

Each element of b ∈ Gm has the same number of m−th roots.
If we find one solution to the equation xm = b, let’s denote it by a,
then every solution has a form x = ac, where c solves xm = 1.
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Literature
Shoup: A Computational Introduction to Number Theory and
Algebra. Chapter 6.1-4.
http://shoup.net/ntb/

Considering rings, see Chapter 7.
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