Groups and abelian groups Subgroups Group homomorphisms

Abelian groups

Mathematical Cryptography, Lectures 7 - 8

Groups and abelian groups Subgroups Group homomorphisms

Contents

1 Groups and abelian groups

2 Subgroups

3 Group homomorphisms

2/29

Definition

- A set G with a binary operation * forms a *group*, in case the operation * is associative, has an identity element, and every element has an inverse.
- Moreover, if a group operation is commutative, we speak about a commutative group or an *abelian group*.

Examples

- $(\mathbb{Z}_n, +)$ is an abelian group of order *n* (additive group)
- (\mathbb{Z}_n, \cdot) is not a group, at least 0 has no inverse
- (ℤ^{*}_n, ·) is the abelian group of order φ(n) (multiplicative group)

The number of elements of a group is called the *order of the group*.

Additive and multiplicative notation

- Additive notation: $(G, +, 0, -(\cdot))$ the operation is +, the zero element 0, the opposite element to a is -a: iterated addition gives a multiple $a + a + \ldots + a = ka$ k times • Multiplicative notation: $(G, \cdot, 1, (\cdot)^{-1})$
 - the operation \cdot , the identity element 1, the inverse of *a* is a^{-1} ; iterated multiplication gives a power $a \cdot a \cdot \ldots \cdot a = a^k$ k times

Note: We will use multiplicative notation mostly.

Powers of elements

Let (G, \cdot) be a group with the identity element 1, $a \in G$, $k \in \mathbb{Z}$. We define an integer power of the element a as follows:

• for
$$k > 0$$
 is $a^k = \underbrace{a \cdot a \cdot \ldots \cdot a}_{k \text{ times}}$ (due to associativity)

•
$$a^0 = 1$$
 (due to the identity element)

• for
$$k < 0$$
, $a^k = (a^{-1})^{|k|}$ (due to the inverse of a)

Proposition

Well-known formulas hold: $a^{k+l} = a^k a^l$, $(a^k)^l = a^{kl}$ Moreover, in an abelian group: $(ab)^k = a^k b^k$

Proposition

Let (G, \cdot) be a group.

- The identity element is uniquely determined.
 If e is the left identity element and f is the right identity element, then e = f is the identity element.
- The inverse element of *a* is uniquely determined. If *b* is the left inverse of *a*, *c* the right inverse of *a*, then *b* = *c* is the inverse of *a*.
- Socks and shoes lemma: In a (non-commutative) group, (ab)⁻¹ = b⁻¹a⁻¹.

Proposition

Let (G, \cdot) be a group.

• The cancellation law holds in the group G, i.e. for every $a \in G$: if $a \cdot x = a \cdot y$, then x = y.

This property does not characterize groups: in (\mathbb{Z}, \cdot) one can also cancel with any element, even though it is not a group.

- All linear equations a · x = b, y · a = b have a solution in the group G, and this solution is unique.
 This property characterizes groups: every semigroup in which all linear equations have a solution already is a group.
- A left translation by an element of $a \in G$, the map $l_a : G \to G : x \mapsto a \cdot x$, is a bijection.

Rings and fields

Remark

- (R,+,·) is called *ring* in case (R,+) is a commutative group, (R, ·) is a semigroup, and both distributive laws hold. A nontrivial ring with unity is called a *domain* if the cancellation law holds for any nonzero element. A non-trivial ring is a *field* if (R {0}, ·) is a group.
- A non-trivial ring is a field if and only if all linear equations $a \cdot x = b$, $y \cdot a = b$, where $a \neq 0$, have a solution.
- Every finite domain is a field, because an injection *l_a* is a mapping from a finite set to itself, so it must be a bijection.

Definition

If G_1, \ldots, G_k are groups, then the set $G_1 \times \ldots \times G_k$ of all k-tuples together with the operation defined component-wise (in the *i*'th component one counts as in G_i) is also a group. It is called the *direct product* of the groups G_1, \ldots, G_k . If all groups are equal, $G_i = G$ for $1 \le i \le k$, we speak of the direct power of G and we denote it by $G^{\times k}$.

Remark

The direct product of groups was used in the Chinese remainder theorem. For example, $\mathbb{Z}_{15} \simeq \mathbb{Z}_3 \times \mathbb{Z}_5$.

Subgroups

Definition

A subset *H* of the group $(G, \cdot, 1, (\cdot)^{-1})$ forms an subgroup if for every $a, b \in G$ the following holds:

- if $a, b \in H$, then $ab \in H$
- 1 ∈ H
- if $a \in H$, then $a^{-1} \in H$

It means, a subgroup is a subset of the group, which is closed to the binary operation, to the identity element and all inverse elements.

Subgroups

Proposition

Let G be a group and $\emptyset \neq H \subseteq G$. The following statements are equivalent:

- *H* is a subgroup in *G*
- for all $a, b \in G$: if $a, b \in H$, then $ab \in H$ and $a^{-1} \in H$
- for all $a, b \in G$: if $a, b \in H$, then $ab^{-1} \in H$

Proposition

Let H_1 , H_2 be subgroups in the group G.

- $H_1 \cap H_2$ is a subgroup in G.
- If, moreover, G is abelian, then

 $H_1 \cdot H_2 = \{h_1h_2; h_1 \in H_1, h_2 \in H_2\}$ is a subgroup in G.

Subgroups

Examples

Let G be a group.

- Obviously $\{1\}$ and G are subgroups of the group G.
- The set of all integer powers of the element a ∈ G,
 M = {a^k, k ∈ ℤ} is a subgroup of G. We call it the cyclic subgroup generated by a, we denote it by ⟨a⟩.

In the additive group (G, +), the cyclic group $\langle a \rangle$ is the set of all integer multiples of the element $a \in G$.

Subgroups in $\mathbb Z$ and in $\mathbb Z_n$

Proposition

Every subgroup in $(\mathbb{Z}, +)$ is of the form $m\mathbb{Z}$ for some $m \in \mathbb{Z}$. Moreover: $m_1\mathbb{Z} \subseteq m_2\mathbb{Z}$ just when $m_2 \mid m_1$.

Proposition

.

Every subgroup in $(\mathbb{Z}_n, +)$ is of the form $d\mathbb{Z}_n$ for some $d \in \mathbb{Z}$, where $d \mid n$. Moreover: $d_1\mathbb{Z}_n \subseteq d_2\mathbb{Z}_n$ just when $d_2 \mid d_1$.

Thus, every subgroup of $(\mathbb{Z}_n, +)$ is cyclic. For each divisor d of n there is one subgroup of the form $d\mathbb{Z}_n$. This subgroup has $\frac{n}{d}$ elements.

Cosets of a subgroup

Definition

Let G be a group, H a subgroup of G, $a \in G$. The *left coset of the subgroup* H determined by an element a is the set $aH = \{ah, h \in H\}$. The right coset Ha is defined analogously.

Remark

If G is an abelian group, then aH = Ha (and we denote it as $[a]_H$) for every $a \in G$. The number of different cosets of H in G is called the *index of the*

subgroup H in the group G, and denoted [G : H].

Cosets of a subgroup

Proposition

- For every $a \in G$, |aH| = |H|.
- All left cosets form a partition on the set G, i.e.
 - $G = \bigcup_{a \in G} aH$, and aH, bH are either the same or disjunctive.

Lagrange's theorem

Let G be a finite group and H a subgroup of G. The order of the subgroup H divides the order of the group G, more precisely $|G| = [G : H] \cdot |H|$.

Remark

For subsemigroups of a finite semigroup, something similar does not hold. For example, in the semigroup of left zeros, every subset forms a subsemigroup.

Quotient group modulo a subgroup

Proposition

Let G be an abelian group and H be a subgroup in G.

- The prescription $aH \cdot bH = abH$ correctly defines an operation on cosets. (Due to commutativity, the result does not depend on the choice of cosets representatives.)
- The set of all cosets of *H* in *G* together with this operation again forms a group. It is called the *quotient group* of *G* modulo *H* and is denoted by *G*/*H*.

Remark

The noncommutative group *G* can be factorized only modulo a *normal subgroup H*, for which aH = Ha holds for all $a \in G$.

Congruence modulo a subgroup

Example

 $(\mathbb{Z}/n\mathbb{Z}, +) = (\mathbb{Z}_n, +)$ Let us remind that \mathbb{Z}_n was previously made through factoring by congruence modulo *n*, where $a \equiv b \pmod{n}$ in case $n \mid a - b$, or equivalently $a - b \in n\mathbb{Z}$.

Definition

Let G be an abelian group, H a subgroup in G, $a, b \in G$. We say that a is congruent with b modulo the subgroup H, $a \equiv b \pmod{H}$ in case $ab^{-1} \in H$.

Claim

The following statements are equivalent. $a \equiv b \pmod{H}$ iff Ha = Hb iff a = hb for some $h \in H$.

Congruence modulo a subgroup

Proposition

- The congruence modulo a subgroup is an equivalence relation on the set G, so it splits G into classes, and these classes are exactly the cosets aH, for a ∈ G. (This holds for all groups.)
- The congruence modulo a subgroup is preserved by the binary operation (this applies only to abelian groups), so we can define a binary operation on classes via representatives.
- This constructs a factor group of the group G by congruence modulo H, which is exactly the quotient group G/H.

For non-commutative groups, one can only introduce the congruence modulo a normal subgroup.

18/29

Quotient domain modulo an ideal

Remark

- Let (R, +, ·) be a commutative ring. The subset I ⊂ R is called the *ideal* of the ring R in case
 - (I, +) is a subgroup of (R, +),
 - for all $r \in R$ and all $i \in I$ holds $r \cdot i \in I$.
- If we want to create a *commutative quotien ring*, we must count modulo an ideal, so that addition and multiplication on cosets can be defined correctly via representatives.
- Each ideal in Z is of the form mZ for some m ∈ Z. The quotient ring modulo an ideal mZ is just (Z/mZ, +, ·) = (Z_m, +, ·) the factor ring of residue classes modulo m.

Definition

Let (G_1, \cdot) and (G_2, \circ) be groups. A map $f : G_1 \to G_2$ is called the *group homomorphism* in case for all $a, b \in G_1$ the following holds:

•
$$f(a \cdot b) = f(a) \circ f(b)$$

•
$$f(1) = 1$$

•
$$f(a^{-1}) = f(a)^{-1}$$

Proposition

Let (G_1, \cdot) and (G_2, \circ) be groups. A map $f : G_1 \to G_2$ is the group homomorphism, if and only if for all $a, b \in G_1$ holds $f(a \cdot b) = f(a) \circ f(b)$.

Examples

- For any groups G_1 and G_2 , the map $f : G_1 \to G_2 : a \mapsto 1$ is a group homomorphism.
- Let *H* be a subgroup of the group *G*. The embedding $i: H \to G : h \mapsto h$, and the natural projection $\pi: G \to G/H : a \mapsto aH$ are group homomorphisms.
- For any group G and for any a ∈ G, the integer exponentiation map f : (Z,+) → G : z ↦ a^z is a group homomorphism.
- For any abelian group G, the m-th power map on G, $\rho: G \to G: a \mapsto a^m$ is a group homomorphism.

Group isomorphisms

Definition

Let (G_1, \cdot) and (G_2, \circ) be groups. A group homomorphism $f : G_1 \to G_2$, which is a bijection too, is called the *group isomorphism*.

Proposition

Let $n = \prod_{i=1}^{k} p_i^{e_i}$, where the primes p_i are different. The reminder map $\theta : \mathbb{Z}_n \to \mathbb{Z}_{p_1^{e_1}} \dots \times \mathbb{Z}_{p_k^{e_k}} : a \mapsto (a_1, \dots, a_k)$, where $0 \le a_i < p_i^{e_i}$ satisfy $a \equiv a_i \pmod{p_i^{e_i}}$, is a group isomorphism of additive groups: $\mathbb{Z}_n \cong \prod_{i=1}^k \mathbb{Z}_{p_i^{e_i}}$

The restriction of θ to the set \mathbb{Z}_n^* is a group isomorphism of multiplicative groups: $\mathbb{Z}_n^* \cong \mathbb{Z}_{p_1^{e_1}}^{*e_1} \dots \times \mathbb{Z}_{p_k^{e_k}}^{*e_k}$

Ring homomorphisms

Remark

- Let (R₁, +, ·), (R₂, +, ·) be commutative rings with unit. A map f : R₁ → R₂ is called the *ring homomorphism*, in case it is a group homomorphism of additive groups and it respects multiplication and the identity element.
- A map f is a ring homomorphism iff for all $a, b \in R_1$, f(a+b) = f(a) + f(b), $f(a \cdot b) = f(a) \cdot f(b)$, f(1) = 1.
- The Chinese reminder map θ is a ring isomorphism.

Group isomorphisms

Proposition

Let G be an abelian group, H_1 , H_2 its subgroups. If $H_1 \cap H_2 = 1$, then $H_1 \times H_2 \cong H_1 \cdot H_2$, where the map $f : H_1 \times H_2 \rightarrow H_1 \cdot H_2 : (h_1, h_2) \mapsto h_1 h_2$ is a group isomorphism.

Definition

Let G be an abelian group, H_1 , H_2 its subgroups. If $G = H_1 \cdot H_2$ and $H_1 \cap H_2 = 1$, then the group G is called the *internal direct product* of the subgroups H_1 and H_2 . We denote it by $G = H_1 \times H_2$.

In this case, every element $g \in G$ can be written uniquely in the form $g = h_1 h_2$ for some $h_1 \in H_1$, $h_2 \in H_2$.

Definition

Let $f: G_1 \rightarrow G_2$ be a group homomorphism.

- The *image* of f is the set $Im f = \{b \in G_2; b = f(a) \text{ for some } a \in G_1\}.$
- The kernel of f is the set Ker $f = \{a \in G_1; f(a) = 1\}$.

Proposition

Let $f: G_1 \rightarrow G_2$ be a group homomorphism.

- Ker f is a subgroup of the group G_1 (even a normal subgroup).
- Im f is a subgroup of the group G_2 .
- The image of a subgroup is a subgroup too and the preimage of a subgroup is a subgroup too.
- f is injective, if and only if $Ker f = \{1\}$.

The first isomorphism theorem

Let $f : G \to G'$ be a group homomorphism. Then $G/\operatorname{Ker} f \cong \operatorname{Im} f$. Specially, the map $\varphi : G/\operatorname{Ker} f \to G' : a \operatorname{Ker} f \mapsto f(a)$ is an injecvite group homomorphism whose image is $\operatorname{Im} f$.

So it holds, that $\varphi \circ \pi = f$ where π is the natural projection and the operation \circ is the composition of mappings.

Remark

Let $f : R \to R'$ be a ring homomorphism, then $R/Ker f \cong Im f$. Here, the quotient ring R/Ker f can be constructed because Ker f always is an ideal in R.

Consequence

Let $f : G \to G'$ be a group (a ring) homomorphism. Then each element $b \in Im f$ has the same number of preimages. If the element *a* is one of preimages of *b*, then the equation f(x) = b is solved by all elements of the coset *a Ker f*. Each solution has a form x = ac, where $c \in Ker f$ solves the equation f(x) = 1.

This fact (in its additive form) is well known from solving systems of linear equations.

m-th powers and roots

Let G be an abelian group, then the power map $\rho: G \to G: a \mapsto a^m$ is a group homomorphism.

- Ker ρ = {a ∈ G, a^m = 1} = G^m√1 (the set of all *m*-th roots of 1) is a subgroup of G.
- Im ρ = {a^m, a ∈ G} = G^m (the set of all *m*-th powers of elements of G) is a subgroup of G.
- $G/Ker \rho \simeq Im \rho$, where the corresponding isomorphism is $\varphi : aKer \rho \mapsto a^m$.

Each element of $b \in G^m$ has the same number of m-th roots. If we find one solution to the equation $x^m = b$, let's denote it by a, then every solution has a form x = ac, where c solves $x^m = 1$.

Abelian groups

Literature

- Shoup: A Computational Introduction to Number Theory and Algebra. Chapter 6.1-4. http://shoup.net/ntb/
- Considering rings, see Chapter 7.