Contents

Alena Gollová The structure of $\mathbb{Z}_{\mathbf{n}}^*$ 1/21

Group exponent

By Euler's theorem, $a^{|G|} = 1$ for every element $a \in G$. However, |G| need not be the smallest exponent to which we must power even any element $a \in G$ to get the identity 1.

Definition

Let (G, \cdot) be a group with the identity element 1. The smallest positive integer m > 0, such that for every $a \in G$ is $a^m = 1$, is called the *exponent of the group* G. We denote it by $\exp(G)$. If no such m exists, we set $\exp(G) = 0$.

Examples

• $\exp(\mathbb{Z}_n) = n$, $\exp(\mathbb{Z}) = 0$

•
$$\exp(\mathbb{Z}_9^*) = 6 = \varphi(9)$$

•
$$\exp(\mathbb{Z}_8^*) = 2 < \varphi(8)$$

Group exponent

Proposition

• If G is a finite group, then G has a positive exponent and $\exp(G) \mid |G|$.

Alena Gollová The structure of \mathbb{Z}_n^*

2/21

- If the group G has a positive exponent, then every element a ∈ G has a finite order and r(a) | exp(G).
- If the group G is cyclic, then exp(G) = 0 iff G is infinite, and exp(G) = |G| iff G is finite.
- If G_1 , G_2 are groups, then $\exp(G_1 \times G_2) = \operatorname{lcm}(\exp(G_1), \exp(G_2)).$

Group exponent

Proposition

If an abelian group G has a positive exponent $\exp(G) = m > 0$, then it contains an element of order m.

Proof: Let $m = \prod_{i=1}^{k} p_i^{e_i}$. For any $1 \le i \le k$ we can find an element $b_i \in G$ such that $b_i^{\frac{m}{p_i}} \ne 1$, otherwise $\exp(G) \le \frac{m}{p_i} < m$. Let $m_i = \frac{m}{(p_i^{e_i})}$, then $a_i = b_i^{m_i}$ has an order $r(a_i) = p_i^{e_i}$. Set $a = \prod_{i=1}^{k} a_i$, then an order r(a) = m due to the pairwise relatively primeness of the orders $r(a_i)$.

Consequence

A finite abelian group G is cyclic if and only if exp(G) = |G|.

Alena Gollová The structure of \mathbb{Z}_n^*

5/21

The structure of \mathbb{Z}_n^*

Proposition

The group \mathbb{Z}_p^* is cyclic for each prime *p*.

Proof: Denote $\exp(\mathbb{Z}_p^*) = m \le p - 1$. Any element $a \in \mathbb{Z}_p^*$ satisfies $a^m = 1$, so it is a root of $x^m - 1$. Since \mathbb{Z}_p is a field, m = p - 1 must hold. The element of order $\exp(\mathbb{Z}_p^*) = p - 1$ (which exists) is the generator of \mathbb{Z}_p^* .

Proposition

The group T^* is cyclic for every finite field T (or for every finite integrity domain).

The structure of \mathbb{Z}_n^*

For which $n \in \mathbb{N}$ is the group \mathbb{Z}_n^* cyclic? First we show that groups \mathbb{Z}_p^* , where p is a prime, are cyclic, using the fact that $(\mathbb{Z}_p, +, \cdot)$ is a field.

Proposition

A non-zero polynomial of the degree m over a field has at most m distinct roots.

Note

The proposition is true for polynomials over an integrity domain (a ring with no zero divisors) too, but not over any ring. For example, $x^2 - 1$ has four roots in \mathbb{Z}_8 , namely $\pm 1, \pm 3$.

Alena Gollová The structure of \mathbb{Z}_n^* 6/21

The structure of \mathbb{Z}_n^*

Next we examine groups $\mathbb{Z}_{p^e}^*$, where *p* is a prime.

Proposition

Let p be a prime. For every $1 \le k \le p-1$ is $p \mid \binom{p}{k}$

Lemma 1

Let p be a prime and $e \ge 1$ be a natural number. If $a \equiv b \pmod{p^e}$ then $a^p \equiv b^p \pmod{p^{e+1}}$.

Lemma 2

Let p be a prime and $e \ge 1$ be a natural number and let $p^e > 2$. If $a \equiv 1 + p^e \pmod{p^{e+1}}$ then $a^p \equiv 1 + p^{e+1} \pmod{p^{e+2}}$.

Proposition

The group $\mathbb{Z}_{p^e}^*$ is cyclic for every odd prime p (i.e. p > 2) and every natural number $e \ge 2$. Thus $\exp(\mathbb{Z}_{p^e}^*) = |\mathbb{Z}_{p^e}^*| = p^{e-1}(p-1)$.

Proof: Let *a* be a generator of the group \mathbb{Z}_p^* and let *r* denote the order of *a* in the group $\mathbb{Z}_{p^e}^*$. Then $b = a^{\frac{r}{p-1}}$ has order p-1 in $\mathbb{Z}_{p^e}^*$. It can be shown that c = 1 + p has order p^{e-1} in $\mathbb{Z}_{p^e}^*$ by lemma 2. Since $\gcd(p^{e-1}, p-1) = 1$, then $r(bc) = p^{e-1}(p-1)$. So the element *bc* is a generator of $\mathbb{Z}_{p^e}^*$.

The structure of \mathbb{Z}_n^*

Proposition

The groups $\mathbb{Z}_{2^{e}}^{*}$ and \mathbb{Z}_{4}^{*} are cyclic. The group $Z_{2^{e}}^{*}$ is not cyclic for every natural number $e \geq 3$. Thus $\exp(\mathbb{Z}_{2^{e}}^{*}) = \frac{|\mathbb{Z}_{2^{e}}^{*}|}{2} = 2^{e-2}$.

Proof: It can proved that c = 5 has order 2^{e-2} by lemma 2. Moreover, $-1 \notin \langle 5 \rangle$. Hence, $\mathbb{Z}_{2^e}^*$ is an internal direct product $\mathbb{Z}_{2^e}^* = \langle -1 \rangle \dot{\times} \langle 5 \rangle$. $\exp(\mathbb{Z}_{2^e}^*) = \operatorname{lcm}(2, 2^{e-2}) = 2^{e-2}$ and $\mathbb{Z}_{2^e}^*$ is not cyclic.

Alena Gollová The structure of \mathbb{Z}_n^* 10/21

Alena Gollová The structure of \mathbb{Z}_n^* 9/21

The structure of \mathbb{Z}_n^*

Finaly we study groups \mathbb{Z}_n^* where *n* is divisible by at least two distinct primes.

Proposition

The group $\mathbb{Z}_{2p^e}^*$ is cyclic for every odd prime p>2 and every natural number $e\geq 1$.

Proposition

The group \mathbb{Z}_n^* is not cyclic for every composite number $n = n_1 n_2$, where $2 < n_1 < n_2$ and $gcd(n_1, n_2) = 1$. In this case, $exp(\mathbb{Z}_n^*) = lcm(exp(\mathbb{Z}_{n_1}^*), exp(\mathbb{Z}_{n_2}^*)) \le \frac{|\mathbb{Z}_n^*|}{2}$.

Proof: Let $n = n_1 n_2$, where $gcd(n_1, n_2) = 1$, then from the Chinese remainder theorem, $\mathbb{Z}_n^* \cong \mathbb{Z}_{n_1}^* \times \mathbb{Z}_{n_2}^*$.

The structure of \mathbb{Z}_n^*

Summary

The group \mathbb{Z}_n^* is cyclic just when

 $n = 1, 2, 4, p^e, 2p^e,$

where p is an odd prime and e is a positive integer.

Carmichael's function

Definition

The function $\lambda : \mathbb{N}^+ \to \mathbb{N}^+ : \lambda(n) = \exp(\mathbb{Z}_n^*)$ is called the *Carmichael's function*. Or $\lambda(n)$ for n > 1 is the smallest m > 0 such that for all *a* relatively prime to *n* is $a^m = 1$ in \mathbb{Z}_n . Furthermore, $\lambda(1) = 1$.

Formulas

•
$$\lambda(p^e) = p^{e-1}(p-1) = \varphi(p^e)$$
 for primes $p > 2$
• $\lambda(2) = 1$, $\lambda(4) = 2$, $\lambda(2^e) = 2^{e-2} = \frac{\varphi(2^e)}{2}$ for $e \ge 3$

• $\lambda(n_1 \cdot n_2) = \operatorname{lcm}(\lambda(n_1), \lambda(n_2))$ for n_1 , n_2 relatively prime

Alena Gollová The structure of \mathbb{Z}_n^* 13/21

Equations $x^m = 1$ in \mathbb{Z}_n

Residual isomorphism

Let $n = \prod_{i=1}^{k} p_i^{e_i}$, where primes p_i are different. The map $\theta : \mathbb{Z}_n \to \mathbb{Z}_{p_1^{e_1}} \times \ldots \times \mathbb{Z}_{p_k^{e_k}} : a \mapsto (a_1, \ldots, a_k)$, where each $0 \le a_i < p_i^{e_i}$ satisfies $a \equiv a_i \pmod{p_i^{e_i}}$, is a ring isomorphism (the Chinese residual isomorphism): $\mathbb{Z}_n \cong \prod_{i=1}^k \mathbb{Z}_{p_i^{e_i}}$ The restriction of θ to the set \mathbb{Z}_n^* is a group isomorphism of multiplicative groups: $\mathbb{Z}_n^* \cong \mathbb{Z}_{p_1^{e_1}}^{*e_1} \ldots \times \mathbb{Z}_{p_k^{e_k}}^{*e_k}$

Consequence

An equation $x^m = 1$ can be solved residually, since $a^m = 1$ in \mathbb{Z}_n if and only if $a_i^m = 1$ in $\mathbb{Z}_{p_i^{e_i}}$ for every $1 \le i \le k$.

Carmichael's function

Note

RSA-encryption will work even if the keys are inverses to aech other modulo $\lambda(n)$, or modulo an integer multiple $k\lambda(n)$, where k > 0.

Corollary: If we use Carmichael's numbers instead of primes p, q when creating the key protocol, the RSA-encryption will work.

A *Carmichael's number* is a composite number *n* such that for every $a \in \mathbb{Z}_n^*$ is $a^{n-1} = 1$ in \mathbb{Z}_n . For a Carmichael's number *n* is $\lambda(n) \mid n-1$.

The Fermat's primality test does not distinguish Carmichael's numbers from primes.

Alena Gollová The structure of \mathbb{Z}_n^* 14/21

Equations $x^m = 1$ in \mathbb{Z}_n

Proposition

If $a \in \mathbb{Z}_n$ solves $x^m = 1$, then a is invertible, so $a \in \mathbb{Z}_n^*$.

So, we have to solve $x^m = 1$ in the group $Z_n^* \cong \mathbb{Z}_{p_1^{e_1}}^* \times \ldots \times \mathbb{Z}_{p_{k'}^{e_k}}^*$

- In cyclic groups $\mathbb{Z}_{p_i^{e_i}}^*$, where $p_i > 2$, we can find all solutions of $x^m = 1$ using the generator. The number of solutions is $d_i = \gcd(m, \varphi(p_i^{e_i}))$.
- In the group Z^{*}_{2^e} we find all solutions of x^m = 1 in the cyclic subgroup (5) of order 2^{e-2}, there is gcd(m, 2^{e-2}) solutions. That is all for m odd, but for m even, we should add the opposite solutions (of the form −a, where a is a solution).
- In Z^{*}_n is d = ∏^k_{i=1} d_i solutions altogether, they are of the form a = a₁q₁ + ··· + a_kq_k, where q_i are from the Chinese remainder theorem.

Example

Solve $x^6 = 1$ in \mathbb{Z}_{304} .

Each solution lies in $\mathbb{Z}_{304}^* \cong \mathbb{Z}_{19}^* \times \mathbb{Z}_{16}^*$.

- $\mathbb{Z}_{19}^* = \langle 2 \rangle$, $\varphi(19) = 18$. The equation here has 6 solutions, namely $x \in \langle 2^3 \rangle = \{\pm 1, \pm 7, \pm 8\}$.
- $\mathbb{Z}_{16}^* = \langle 5 \rangle \times \langle -1 \rangle$, in the subgroup $\langle 5 \rangle$ the equation reduces to $x^2 = 1$ and is solved by $x \in \langle 5^2 \rangle = \{9, 1\}$. The exponent is even, so all solutions are $x \in \{\pm 1, \pm 9\}$.

In \mathbb{Z}^*_{304} there is $6 \cdot 4 = 24$ solutions of the form

 $x \in \{\pm 1, \pm 7, \pm 8\}q_{19} + \{\pm 1, \pm 9\}q_{16}$, where $q_{19} = 96$, $q_{16} = -95$ are obtained by solving the diophantine equation 16t + 19r = 1.

Alena Gollová The structure of \mathbb{Z}_n^* 17/21

Equations $x^m = x$ in \mathbb{Z}_n

Observation

If $n = n_1 n_2$, where $gcd(n_1, n_2) = 1$, then the equation $x^m = x$ can have non-zero non-invertible solutions in the monoid \mathbb{Z}_n . For example, $a \in \mathbb{Z}_n$, where $\theta(a) = (0, 1)$, is a nonzero solution not relatively prime to n_1 .

In \mathbb{Z}_n the equation cannot be canceled by x (even assuming $x \neq 0$), and it is not sufficient to solve $x^m = x$ in the group \mathbb{Z}_n^* .

Proposition

The element *a* solves the equation $x^m = x$ in \mathbb{Z}_{p^e} if and only if either a = 0 or *a* solves the equation $x^{m-1} = 1$ in \mathbb{Z}_{p^e} .

We are able to solve $x^m = x$ in \mathbb{Z}_n residually. For example, we can compute all messages which do not change by RSA encryption.

Equations $x^m = 1$ in \mathbb{Z}_n

Squares and square roots in \mathbb{Z}_n^*

- Let p be an odd prime, then the equation $x^2 = 1$ has just two solutions in $\mathbb{Z}_{p^e}^*$, namely $x = \pm 1$. The group homomorphism $\rho_2 : \mathbb{Z}_{p^e}^* \to \mathbb{Z}_{p^e}^* : a \mapsto a^2$ has $|Ker \rho_2| = 2$, $|Im \rho_2| = \frac{\varphi(p^e)}{2}$.
- Let $n = \prod_{i=1}^{k} p_i^{e_i}$ be an odd number, then $x^2 = 1$ has together 2^k solutions in \mathbb{Z}_n^* . The group homomorphism $\rho_2 : \mathbb{Z}_n^* \to \mathbb{Z}_n^* : a \mapsto a^2$ has $|Ker \rho_2| = 2^k$, $|Im \rho_2| = \frac{\varphi(n)}{2^k}$.

Alena Gollová The structure of \mathbb{Z}_n^* 18/21

Equations $x^m = b$ in \mathbb{Z}_n

Note

All solutions of the equation $x^m = b$ in \mathbb{Z}_n are of the form x = ac, where *a* is one particular solution of this equation, and *c* is any solution of the equation $x^m = 1$ in \mathbb{Z}_n .

We did not give instructions for finding a particular m-th root of b, we only gave the procedure for finding all m-th roots of 1, which relied on the fact that we know the factorization of n.

It is believed that counting the m-th roots in \mathbb{Z}_n without knowing the factorization of n is an exponentially hard problem (by brute force). This is the cause of the security of the RSA encryption.

The structure of \mathbb{Z}_n^\ast

Literature

• Shoup: A Computational Introduction to Number Theory and Algebra. Chapters 6.5 and 7.5. http://shoup.net/ntb/

Alena Gollová The structure of \mathbb{Z}_n^* 21/21