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Group exponent

By Euler’s theorem, a|G | = 1 for every element a ∈ G . However,
|G | need not be the smallest exponent to which we must power
even any element a ∈ G to get the identity 1.

Definition
Let (G , ·) be a group with the identity element 1. The smallest
positive integer m > 0, such that for every a ∈ G is am = 1, is
called the exponent of the group G . We denote it by exp(G ).
If no such m exists, we set exp(G ) = 0.

Examples

exp(Zn) = n, exp(Z) = 0

exp(Z∗9) = 6 = ϕ(9)

exp(Z∗8) = 2 < ϕ(8)
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Group exponent

Proposition
If G is a finite group, then G has a positive exponent and
exp(G ) | |G |.
If the group G has a positive exponent, then every element
a ∈ G has a finite order and r(a) | exp(G ).
If the group G is cyclic, then exp(G ) = 0 iff G is infinite,
and exp(G ) = |G | iff G is finite.

If G1, G2 are groups, then
exp(G1 × G2) = lcm(exp(G1), exp(G2)).
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Group exponent

Proposition

If an abelian group G has a positive exponent exp(G ) = m > 0,
then it contains an element of order m.

Proof: Let m =
∏k
i=1 p

ei
i .

For any 1 ≤ i ≤ k we can find an element bi ∈ G such that

b
m
pi
i 6= 1, otherwise exp(G ) ≤ m

pi
< m.

Let mi = m
(peii )

, then ai = b
mi
i has an order r(ai ) = p

ei
i .

Set a =
∏k
i=1 ai , then an order r(a) = m due to the pairwise

relatively primeness of the orders r(ai ).

Consequence

A finite abelian group G is cyclic if and only if exp(G ) = |G |.
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The structure of Z∗n

For which n ∈ N is the group Z∗n cyclic?
First we show that groups Z∗p, where p is a prime, are cyclic, using
the fact that (Zp,+, ·) is a field.

Proposition
A non-zero polynomial of the degree m over a field has at most m
distinct roots.

Note
The proposition is true for polynomials over an integrity domain
(a ring with no zero divisors) too, but not over any ring.
For example, x2 − 1 has four roots in Z8, namely ±1,±3.
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The structure of Z∗n

Proposition

The group Z∗p is cyclic for each prime p.

Proof: Denote exp(Z∗p) = m ≤ p − 1.
Any element a ∈ Z∗p satisfies am = 1, so it is a root of xm − 1.
Since Zp is a field, m = p − 1 must hold.
The element of order exp(Z∗p) = p − 1 (which exists) is the
generator of Z∗p.

Proposition

The group T ∗ is cyclic for every finite field T (or for every finite
integrity domain).
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The structure of Z∗n

Next we examine groups Z∗pe , where p is a prime.

Proposition

Let p be a prime. For every 1 ≤ k ≤ p − 1 is p |
(p
k

)
Lemma 1
Let p be a prime and e ≥ 1 be a natural number.
If a ≡ b( mod pe) then ap ≡ bp( mod pe+1).

Lemma 2
Let p be a prime and e ≥ 1 be a natural number and let pe > 2.
If a ≡ 1 + pe( mod pe+1) then ap ≡ 1 + pe+1( mod pe+2).
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The structure of Z∗n

Proposition

The group Z∗pe is cyclic for every odd prime p (i.e. p > 2) and
every natural number e ≥ 2.

Thus exp(Z∗pe ) = |Z∗pe | = pe−1(p − 1).

Proof: Let a be a generator of the group Z∗p and let r denote the

order of a in the group Z∗pe . Then b = a
r
p−1 has order p − 1 in Z∗pe .

It can be shown that c = 1 + p has order pe−1 in Z∗pe by lemma 2.

Since gcd(pe−1, p − 1) = 1, then r(bc) = pe−1(p − 1). So the
element bc is a generator of Z∗pe .
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The structure of Z∗n

Proposition

The groups Z∗2 and Z∗4 are cyclic.
The group Z ∗2e is not cyclic for every natural number e ≥ 3.

Thus exp(Z∗2e ) =
|Z∗
2e |
2 = 2e−2.

Proof: It can proved that c = 5 has order 2e−2 by lemma 2.
Moreover, −1 6∈ 〈5〉. Hence, Z∗2e is an internal direct product
Z
∗
2e = 〈−1〉×̇〈5〉.
exp(Z∗2e ) = lcm(2, 2

e−2) = 2e−2 and Z∗2e is not cyclic.
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The structure of Z∗n

Finaly we study groups Z∗n where n is divisible by at least two
distinct primes.

Proposition

The group Z∗2pe is cyclic for every odd prime p > 2 and every
natural number e ≥ 1.

Proposition

The group Z∗n is not cyclic for every composite number n = n1n2,
where 2 < n1 < n2 and gcd(n1, n2) = 1.

In this case, exp(Z∗n) = lcm(exp(Z
∗
n1), exp(Z

∗
n2)) ≤

|Z∗
n |
2 .

Proof: Let n = n1n2, where gcd(n1, n2) = 1, then from the Chinese
remainder theorem, Z∗n ∼= Z

∗
n1 × Z

∗
n2 .
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The structure of Z∗n

Summary

The group Z∗n is cyclic just when

n = 1, 2, 4, pe , 2pe ,

where p is an odd prime and e is a positive integer.
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Carmichael’s function

Definition

The function λ : N+ → N
+ : λ(n) = exp(Z∗n) is called the

Carmichael’s function. Or λ(n) for n > 1 is the smallest m > 0
such that for all a relatively prime to n is am = 1 in Zn.
Furthermore, λ(1) = 1.

Formulas

λ(pe) = pe−1(p − 1) = ϕ(pe) for primes p > 2

λ(2) = 1, λ(4) = 2, λ(2e) = 2e−2 = ϕ(2e)
2 for e ≥ 3

λ(n1 · n2) = lcm(λ(n1), λ(n2)) for n1, n2 relatively prime
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Carmichael’s function

Note
RSA-encryption will work even if the keys are inverses to aech other
modulo λ(n), or modulo an integer multiple kλ(n), where k > 0.

Corollary: If we use Carmichael’s numbers instead of primes p, q
when creating the key protocol, the RSA-encryption will work.

A Carmichael’s number is a composite number n such that
for every a ∈ Z∗n is an−1 = 1 in Zn.
For a Carmichael’s number n is λ(n) | n − 1.

The Fermat’s primality test does not distinguish Carmichael’s
numbers from primes.
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Equations xm = 1 in Zn

Residual isomorphism

Let n =
∏k
i=1 p

ei
i , where primes pi are different.

The map θ : Zn → Zpe11
× . . .× Zpekk : a 7→ (a1, . . . , ak),

where each 0 ≤ ai < peii satisfies a ≡ ai (mod peii ), is a ring
isomorphism (the Chinese residual isomorphism): Zn ∼=

∏k
i=1 Zpeii

The restriction of θ to the set Z∗n is a group isomorphism of
multiplicative groups: Z∗n ∼= Z

∗
pe11
. . .× Z∗

p
ek
k

Consequence
An equation xm = 1 can be solved residually, since am = 1 in Zn
if and only if ami = 1 in Zpeii for every 1 ≤ i ≤ k .

Alena Gollová The structure of Z∗
n 15/21

Equations xm = 1 in Zn

Proposition

If a ∈ Zn solves xm = 1, then a is invertible, so a ∈ Z∗n.

So, we have to solve xm = 1 in the group Z ∗n ∼= Z
∗
pe11
× . . .× Z∗

p
ek
k

.

In cyclic groups Z∗
peii

, where pi > 2, we can find all solutions

of xm = 1 using the generator. The number of solutions is
di = gcd(m, ϕ(p

ei
i )).

In the group Z∗2e we find all solutions of xm = 1 in the cyclic
subgroup 〈5〉 of order 2e−2, there is gcd(m, 2e−2) solutions.
That is all for m odd, but for m even, we should add the
opposite solutions (of the form −a, where a is a solution).

In Z∗n is d =
∏k
i=1 di solutions altogether, they are of the form

a = a1q1 + · · ·+ akqk , where qi are from the Chinese
remainder theorem.
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Equations xm = 1 in Zn

Example

Solve x6 = 1 in Z304.

Each solution lies in Z∗304 ∼= Z
∗
19 × Z∗16.

Z
∗
19 = 〈2〉, ϕ(19) = 18. The equation here has 6 solutions,

namely x ∈ 〈23〉 = {±1,±7,±8}.
Z
∗
16 = 〈5〉 × 〈−1〉, in the subgroup 〈5〉 the equation reduces

to x2 = 1 and is solved by x ∈ 〈52〉 = {9, 1}. The exponent is
even, so all solutions are x ∈ {±1,±9}.

In Z∗304 there is 6 · 4 = 24 solutions of the form
x ∈ {±1,±7,±8}q19 + {±1,±9}q16, where q19 = 96, q16 = −95
are obtained by solving the diophantine equation 16t + 19r = 1.
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Equations xm = 1 in Zn

Squares and square roots in Z∗n
Let p be an odd prime, then the equation x2 = 1 has just
two solutions in Z∗pe , namely x = ±1.
The group homomorphism ρ2 : Z

∗
pe → Z

∗
pe : a 7→ a2 has

|Ker ρ2| = 2, |Im ρ2| = ϕ(pe)
2 .

Let n =
∏k
i=1 p

ei
i be an odd number, then x2 = 1 has

together 2k solutions in Z∗n.
The group homomorphism ρ2 : Z

∗
n → Z

∗
n : a 7→ a2 has

|Ker ρ2| = 2k , |Im ρ2| = ϕ(n)
2k .
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Equations xm = x in Zn

Observation
If n = n1n2, where gcd(n1, n2) = 1, then the equation xm = x can
have non-zero non-invertible solutions in the monoid Zn. For
example, a ∈ Zn, where θ(a) = (0, 1), is a nonzero solution not
relatively prime to n1.
In Zn the equation cannot be canceled by x (even assuming x 6= 0),
and it is not sufficient to solve xm = x in the group Z∗n.

Proposition
The element a solves the equation xm = x in Zpe if and only if
either a = 0 or a solves the equation xm−1 = 1 in Zpe .

We are able to solve xm = x in Zn residually. For example, we can
compute all messages which do not change by RSA encryption.
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Equations xm = b in Zn

Note
All solutions of the equation xm = b in Zn are of the form x = ac ,
where a is one particular solution of this equation, and c is any
solution of the equation xm = 1 in Zn.

We did not give instructions for finding a particular m−th root of
b, we only gave the procedure for finding all m−th roots of 1,
which relied on the fact that we know the factorization of n.

It is believed that counting the m−th roots in Zn without knowing
the factorization of n is an exponentially hard problem (by brute
force). This is the cause of the security of the RSA encryption.
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The structure of Z∗n

Literature
Shoup: A Computational Introduction to Number Theory and
Algebra. Chapters 6.5 and 7.5.
http://shoup.net/ntb/
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