Contents

The structure of 7}

o Group exponent

Mathematical Cryptography, © The structure of Z;,
Lectures 11 - 12 e Groups Z,
o Groups Z.
e Groups Z},

e Equations x™ =1 in Z,

Alena Gollova The structure of Z;s 1/21 Alena Gollova The structure of Z;; 2/21

Group exponent Group exponent

By Euler’s theorem, al®l = 1 for every element a € G. However,
|G| need not be the smallest exponent to which we must power
even any element a € G to get the identity 1. Proposition

@ If G is a finite group, then G has a positive exponent and

Definition exp(G) | |G]|.

Let (G, -) be a group with the identity element 1. The smallest @ If the group G has a positive exponent, then every element
positive integer m > 0, such that for every ac€ G is a” =1, is a € G has a finite order and r(a) | exp(G).

called the exponent of the group G. We denote it by exp(G). o If the group G is cyclic, then exp(G) = 0 iff G is infinite,
If no such m exists, we set exp(G) = 0. and exp(G) = |G| iff G is finite.

Examples o If Gi, G, are groups, then

o exp(Z,) = n, exp(Z) =0 exp(G1 X G) = lem(exp(Gy), exp(G2)).

o exp(Z5) = 6 = ¢(9)
e exp(Z§) =2 < ¢(8)
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Group exponent

Proposition

If an abelian group G has a positive exponent exp(G) = m > 0,
then it contains an element of order m.

Proof: Let m = [, p.
For any 1 < i < k we can find an element b; € G such that
b,-”7 # 1, otherwise exp(G) < < m.

Let m; = ﬁ, then a; = b has an order r(a;) = p'.

Set a = Hfle a;, then an order r(a) = m due to the pairwise
relatively primeness of the orders r(a;).

Consequence

A finite abelian group G is cyclic if and only if exp(G) = |G|.
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The structure of Z;

Proposition

The group Z3 is cyclic for each prime p.

Proof: Denote exp(Z;) = m < p — 1.

Any element a € Zj satisfies a™ = 1, so it is a root of x™ — 1.
Since 7, is a field, m = p — 1 must hold.

The element of order exp(Z},) = p — 1 (which exists) is the
generator of Z,.

Proposition

The group T* is cyclic for every finite field T (or for every finite
integrity domain).
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The structure of Z;

For which n € N is the group Z} cyclic?
First we show that groups Z%, where p is a prime, are cyclic, using
the fact that (Zp, +, ) is a field.

Proposition

A non-zero polynomial of the degree m over a field has at most m
distinct roots.

Note

The proposition is true for polynomials over an integrity domain
(a ring with no zero divisors) too, but not over any ring.
For example, x2 — 1 has four roots in Zg, namely £1, £3.
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The structure of Z;

Next we examine groups Z*., where p is a prime.
p

Proposition

Let p be a prime. Forevery 1 < k<p—1is p| (’;)

Lemma 1

Let p be a prime and e > 1 be a natural number.
If a = b( mod p®) then aP = bP( mod pe*1).

Lemma 2

Let p be a prime and e > 1 be a natural number and let p® > 2.
If a=1+ p( mod pe*!) then aP =1+ p¢+1( mod pe+?).
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The structure of Z;

Proposition

The group Z}. is cyclic for every odd prime p (i.e. p > 2) and
every natural number e > 2.

Thus exp(Zye) = |Z5e| = p**(p — 1).

Proof: Let a be a generator of the group Zj, and let r denote the

order of a in the group Zy.. Then b = a7 7 has order p—1lin Zj..
It can be shown that ¢ = 1+ p has order p°~! in Z}. by lemma 2.

Since ged(p®~1, p — 1) = 1, then r(bc) = p¢~(p — 1). So the
element bc is a generator of Z..
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The structure of Z;

Finaly we study groups Z} where n is divisible by at least two
distinct primes.

Proposition
The group Z3,. is cyclic for every odd prime p > 2 and every
natural number e > 1.

Proposition
The group Z} is not cyclic for every composite number n = nyny,
where 2 < ny < np and ged(ng, np) = 1.

1251
5

In this case, exp(Z},) = lem(exp(Z}, ), exp(Z},)) <

Proof: Let n = nyny, where ged(ng, n2) = 1, then from the Chinese
remainder theorem, 77 = 7} X Z;, .
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The structure of Z;

Proposition

The groups Z3 and Zj are cyclic.
The group ZJ. is not cyclic for every natural number e > 3.

Thus exp(Z3.) = @ =282,

Proof: It can proved that ¢ = 5 has order 2672 by lemma 2.
Moreover, —1 ¢ (5). Hence, Z3. is an internal direct product

2e = (=1)x(5).
exp(Z3.) = lem(2,2672) = 2672 and Z. is not cyclic.
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The structure of Z;

Summary

The group Z7 is cyclic just when
n=124 p°2p°

where p is an odd prime and e is a positive integer.
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Carmichael’s function Carmichael’s function

Definition Note

The function X : Nt — N* : X\(n) = exp(Z?) is called the RSA-encryption will work even if the keys are inverses to aech other
Carmichael’s function. Or A(n) for n > 1 is the smallest m > 0 modulo A(n), or modulo an integer multiple kA(n), where k > 0.
such that for all a relatively prime to nis a™ =1 in Z,,. Corollary: If we use Carmichael’s numbers instead of primes p, g
Furthermore, A(1) = 1. when creating the key protocol, the RSA-encryption will work.

A Carmichael’s number is a composite number n such that
for every a € 7% is a" 1 = 1in Z,,.
For a Carmichael’s number nis A(n) | n — 1.

Formulas
o A(p®) = p*~t(p—1) = @(p®) for primes p > 2

_ _ _ ge—2 _ ¢(2°)
°© A(2) =1, A4) =2 AM2°) =27 "="5"fore>3 The Fermat's primality test does not distinguish Carmichael’s

® A(m - n2) = lem(A(n1), A(n2)) for ny, 2 relatively prime numbers from primes.
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Equations x™ =1 in Z, Equations x™ =1 in Z,
Proposition

Residual isomorphism If a € Z, solves x™ =1, then a is invertible, so a € Z7,.

Let n = H,/'(:1 p:’, where primes p; are different.

The map 6 : 7, — Zp;l X ... X Zp:k car (a1, ..., a3k), So, we have to solve x™ =1 in the group Z; = Z*e1 X ... X Z:ek
where each 0 < a; < p" satisfies a = a; (mod p;"), is a ring @ In cyclic groups Z* , where p; > 2, we can fmd all solutions
isomorphism (the Chinese residual isomorphism): Z,, = Hfle pr" of x™ =1 using the generator. The number of solutions is
The restriction of 6 to the set Z7, is a group isomorphism of di = ged(m, o(p;")).

multiplicative groups: Z}, = Z:fl S X Z;Zk @ In the group Z5. we find all solutions of x™ =1 in the cyclic

subgroup (5) of order 2672, there is gcd(m, 2¢~2) solutions.
That is all for m odd, but for m even, we should add the

Consequence _ _ : _
opposite solutions (of the form —a, where a is a solution).

An equation x™ =1 can be solved residually, since ™ =1 in Z,

if and only if a™ = 1 in Z,e for every 1 < i < k. e InZisd= Hf‘zl d; solutions altogether, they are of the form

a=aiqi + -+ axqk, where g; are from the Chinese
remainder theorem.
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Equations x™ =1 in Z,

Example
Solve x% =1 in Z304.
Each solution lies in Z3y, = Z7q X Z3.
e Zig = (2), ¢(19) = 18. The equation here has 6 solutions,
namely x € (23) = {+1,47,48}.
e Zjs = (5) x (—1), in the subgroup (5) the equation reduces
to x2 =1 and is solved by x € (52) = {9,1}. The exponent is
even, so all solutions are x € {+1, +9}.

In Z3,, there is 6 - 4 = 24 solutions of the form
x € {£1,47,4+8}q19 + {1, £9}q16, where g19 = 96, g16 = —95
are obtained by solving the diophantine equation 16t + 19r = 1.
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Equations x™ = x in Z,

Observation

If n = nyny, where ged(ng, n2) = 1, then the equation x™ = x can
have non-zero non-invertible solutions in the monoid Z,. For
example, a € Z,,, where 6(a) = (0,1), is a nonzero solution not
relatively prime to nj.

In Z,, the equation cannot be canceled by x (even assuming x # 0),
and it is not sufficient to solve x™ = x in the group Z}.

Proposition

The element a solves the equation x™ = x in Zpe if and only if
either a = 0 or a solves the equation x™ ! =1 in Zpe.

We are able to solve x™ = x in Z, residually. For example, we can
compute all messages which do not change by RSA encryption.
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Equations x™ =1 in Z,

Squares and square roots in Z},

o Let p be an odd prime, then the equation x> = 1 has just
two solutions in Zp., namely x = £1.
The group homomorphism py : Z5e — Z35. : a+— a° has
<p(§e)_

|Ker p2| =2, |Imp2| =

@ Let n= Hfle pf" be an odd number, then x2 = 1 has
together 2 solutions in Z%.
The group homomorphism po : Z% — Z*% : a + a° has

|Ker pa| = 2%, |Im pa| = 24
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Equations x” = b in Z,

Note

All solutions of the equation x™ = b in Z,, are of the form x = ac,
where a is one particular solution of this equation, and c is any
solution of the equation x™ =1 in Z,,.

We did not give instructions for finding a particular m—th root of
b, we only gave the procedure for finding all m—th roots of 1,
which relied on the fact that we know the factorization of n.

It is believed that counting the m—th roots in Z,, without knowing
the factorization of n is an exponentially hard problem (by brute
force). This is the cause of the security of the RSA encryption.
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The structure of Z;
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