
Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Discrete logarithm

Mathematical Cryptography,
Lectures 13 - 14

Alena Gollová Discrete logarithm 1/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Contents

1 Diffie-Hellman and ElGamal protocols
Discrete logarithm
Diffie-Hellman and ElGamal protocols
Security of both protocols

2 Computing discrete logarithms
Baby step/giant step algorithm
Pohling-Hellman algorithm

3 Finding a generator for Z∗p

Alena Gollová Discrete logarithm 2/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Discrete logarithm
Diffie-Hellman and ElGamal protocols
Security of both protocols

Discrete logarithm

Definition
Let G = 〈a〉 be a cyclic group of order n with a generator a.
Each element b ∈ G has a form b = ax for unique x ∈ Zn.
This x is called the discrete logarithm of b to the base a in the
group G . It is denoted by dloga(b).

Example

Z
∗
9 = 〈2〉, |Z∗9| = 6.

b ∈ Z∗9 1 2 4 5 7 8
dlog2(b) 0 1 2 5 4 3

Alena Gollová Discrete logarithm 3/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Discrete logarithm
Diffie-Hellman and ElGamal protocols
Security of both protocols

Discrete logarithm

Proposition

Let G = 〈a〉 be a cyclic group of order n.
The exponentiation map expa : (Zn,+)→ (G , ·) : x 7→ ax
is a group isomorphism.
The discrete logarithm dloga : (G , ·)→ (Zn,+) : g = ax 7→ x
is its inverse mapping, so it is a group isomorphism too.

For b, c ∈ G , k ∈ Z these formulas hold:

dloga(b · c) = dloga(b) + dloga(c)

dloga(1) = 0

dloga(b
k) = k dloga(b), dloga(b

−1) = −dloga(b)

Alena Gollová Discrete logarithm 4/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Discrete logarithm
Diffie-Hellman and ElGamal protocols
Security of both protocols

Discrete logarithm

Note
Sometimes the discrete logarithm is introduced in a more general
meaning:

Let G be an abelian group, a, b ∈ G .
If b ∈ 〈a〉, then dloga(b) is defined as any x ∈ Z for which ax = b.
Such x is uniquely determined modulo the order of the element a.
If b 6∈ 〈a〉, then dloga(b) is not defined.

If G is a cyclic group and r(a) = r (here r ≤ |G |),
then b ∈ 〈a〉 if and only if b solves the equation x r = 1.
Therefore, dloga(b) is defined only if br(a) = 1 in G .

Alena Gollová Discrete logarithm 5/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Discrete logarithm
Diffie-Hellman and ElGamal protocols
Security of both protocols

Discrete logarithm

Discrete logarithm problem (DLP)

For most groups computation of discrete logarithms is assumed to
be an exponential or subexponential problem - for groups Z∗p and
their subgroups, or for groups of points on an elliptic curve.
(In the following protocols these groups play the role of G .)

For the group (Zn,+) it is not hard to compute the discrete
logarithm. Here dloga(b) = x ∈ Zn such that b = x · a in Zn,
because it is an additive group. This linear equation can be solved
by the extended Euclidean algorithm in time O(len(n)2).

Alena Gollová Discrete logarithm 6/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Discrete logarithm
Diffie-Hellman and ElGamal protocols
Security of both protocols

Discrete logarithm in cryptography

The Diffie-Hellman protocol is a public arrangement of a
common secret key for symmetric encryption. Its security
relies on the discrete logarithm problem.

Invented by Whitfield Diffie and Martin Hellman, USA, 1976.

ElGamal encryption is a non-symmetric public-key encryption
that relies on the same idea as the Diffie-Hellman key
establishment.

Invented by Taher ElGamal, USA (Egypt), 1985.

Alena Gollová Discrete logarithm 7/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Discrete logarithm
Diffie-Hellman and ElGamal protocols
Security of both protocols

Diffie-Hellman key establishment

Diffie-Hellman protocol
Alice chooses a cyclic group G of order n and its generator a.
Then she chooses x ∈ Zn and computes b = ax in the group G .
Alice sends to Bob the element b and group informations (G , n, a).

Bob chooses y ∈ Zn and computes c = ay in the group G .
Bob sends to Alice the element c .

Alice computes sA = cx and Bob computes sB = by in G .
Both of them obtain the same secret key s = sA = sB = axy .

Alena Gollová Discrete logarithm 8/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Discrete logarithm
Diffie-Hellman and ElGamal protocols
Security of both protocols

Diffie-Hellman key establishment

Diffie-Hellman protocol
Alternatively, the third part chooses a cyclic group G of order n
and its generator a. Informations (G , n, a) are published in a
”phone book”, where Alice inserts her public part of key, b = ax

under her name, and Bob inserts his public part of key, c = ay

under his name. Both secret parts of key, x and y will not be
revealed to anyone.

Encryption
Alice and Bob can use the established secret key s for a symmetric
encryption.

Diffie-Hellman key establishment solves key distribution problem
that troubles any symmetric encryption.

Alena Gollová Discrete logarithm 9/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Discrete logarithm
Diffie-Hellman and ElGamal protocols
Security of both protocols

ElGamal encryption

ElGamal protocol
Alice chooses a cyclic group G of order n and its generator a.
Then she chooses x ∈ Zn and computes b = ax in the group G .

Alice posts the element b and the group informations (G , n, a) in
a ”phone book”.
Element b is Alice’s public key, while x is Alice’s secret key.

Alena Gollová Discrete logarithm 10/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Discrete logarithm
Diffie-Hellman and ElGamal protocols
Security of both protocols

ElGamal encryption

Encryption
Bob chooses y ∈ Zn, a so-called jepices key.
He computes c = ay , s = by (again s = axy) in the group G .

Bob encrypts the message m ∈ G : m̄ = m · s in G .
Bob sends to Alice a pair (c , m̄).

Decryption

Alice computes s = cx , respectively s−1 = cn−x in the group G .

Alice decrypts the message m̄: m = m̄ · s−1 in G .

Alena Gollová Discrete logarithm 11/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Discrete logarithm
Diffie-Hellman and ElGamal protocols
Security of both protocols

ElGamal encryption

Example

Alice’s public key is b = 7 for the group Z∗37 = 〈2〉 of order n = 36.
Alice’s private key is x = 32.

Bob wants to encrypt the message m = 10 for Alice, and he uses a
jepices key y = 8.
He computes c = 28 = 34, s = 78 = 16, m̄ = 10 · 16 = 12 in Z∗37.
Bob sends (c , m̄) = (34, 12).

Alice wants to decrypt the message m̄.
She calculates s−1 = 3436−32 = 7, m = 12 · 7 = 10 in Z∗37.

Alena Gollová Discrete logarithm 12/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Discrete logarithm
Diffie-Hellman and ElGamal protocols
Security of both protocols

ElGamal encryption

For encryption and decryption in ElGamal protocol we need to do:

exponentiation in the group G , by the repeated squaring
algorithm it requires O(len(n)) multiplications in the group G ,
where n = |G |.
choosing different jepices keys for each message (by a random
number generator in Zn).
This is necessary for security: if Eve were to decrypt one
message m̄, she would compute the key s = m̄m−1 and then
decrypt all messages.

A disadvantage of the protocol is that the encrypted message
is twice as long as the open message. ElGamal encryption is
less used than RSA encryption because of this.

Alena Gollová Discrete logarithm 13/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Discrete logarithm
Diffie-Hellman and ElGamal protocols
Security of both protocols

ElGamal encryption

To create both protocols, we need a cyclic group and its generator.
In practice it is used (see Shoup, 2005):

G is a subgroup in Z∗p,
where p is a prime of 1024 bits - it is sufficient with respect to
subexponential algorithms for discrete logarithm,
|G | = q is a prime of 160 bits - it is sufficient with respect to
exponential algorithms for discrete logarithm.
Messages can be chosen m ∈ Z∗p (and it works), and the
exponentiation is faster since exponents are smaller than q.

G is a group of points on an elliptic curve,
an order |G | has 160 bits - in these groups, there is no
subexponential algorithm for discrete logarithm.
Messages must be converted to the group G .

Alena Gollová Discrete logarithm 14/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Discrete logarithm
Diffie-Hellman and ElGamal protocols
Security of both protocols

Security of both protocols

Discrete logarithm problem

Let G = 〈a〉 be a group of order n. Discrete logarithm problem is
for given b ∈ G to find x ∈ Zn such that b = ax in G .

Security of Diffie-Helman and ElGamal protocols relies on a
complexity of the discrete logarithm problem in a given group.
The following algorithms are known so far:

exponential algorithms requiring O(
√
n) = O(2

1
2 len(n))

multiplications in G , which work in every cyclic group
(subgroups of Z∗p, groups of points on elliptic curves);

a subexponential probabilistic algorithm operating in time
O(e(2

√
2+o(1))

√
ln(p) ln(ln(p)))) works only in subgroups of Z∗p;

The exponential mapping in these groups is an one-way function.

Alena Gollová Discrete logarithm 15/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Discrete logarithm
Diffie-Hellman and ElGamal protocols
Security of both protocols

Security of both protocols

Diffie-Hellman problem

Let G = 〈a〉 be a group. From knowledge of b = ax and c = ay

compute s = axy . The exponents x , y are unknown.

The Diffie-Hellman problem can only be solved via the discrete
logarithm so far, i.e. by computing x and y . The Diffie-Hellman
problem is believed to have the exponential complexity.

Diffie-Hellman decisional problem

Decide whether a triple (b, c , d) is of the form (ax , ay , axy) in the
group G = 〈a〉.

So far, it is believed that Diffie-Hellman triples (ax , ay , axy) are not
distinguishable from random triples (ax , ay , az) even by
probabilistic methods.

Alena Gollová Discrete logarithm 16/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Discrete logarithm
Diffie-Hellman and ElGamal protocols
Security of both protocols

Security of both protocols

Notes
If |G | = n is divisible by small primes, then the discrete
logarithm can be computed much faster (in exponential time
with much smaller exponent by Pohling-Hellman algorithm).

If |G | = n is divisible by small primes, then there is a
probabilistic algorithm that recognizes the Diffie-Hellman
triples in polynomial time (q + len(p))O(1) with probability 1q ,
where q is the smallest prime that divides n (in case G is a
subgroup of Z∗p).

Therefore, it is used to choose |G | = q, with q prime.

Alena Gollová Discrete logarithm 17/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Baby step/giant step algorithm
Pohling-Hellman algorithm

Computing discrete logarithms

Let G = 〈a〉 be a cyclic group of order n with a generator a.
For an element b ∈ G we want to compute dloga(b), so we look
for x ∈ Zn such that b = ax in G .

Following algorithms work in any cyclic group. For the time
complexity only the number of multiplications will be specified,
because the time for doing a multiplication differs in each group.

Brute force algorithm

We compute ai for every 0 ≤ i < n by successive multiplying by a,
until the element b is the result.

Time complexity - we perform at most n multiplications in G , so
the complexity is O(n) = O(2len(n)) multiplications in G .

Alena Gollová Discrete logarithm 18/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Baby step/giant step algorithm
Pohling-Hellman algorithm

Computing discrete logarithms

Baby step/giant step algorithm

We choose an approximation m .
=
√
n, then also m′ = [nm]

.
=
√
n.

We write x = dloga(b) = vm + u, then 0 ≤ u < m, 0 ≤ v ≤ m′
because 0 ≤ x < n. We search for the corresponding u, v .

b = ax = avm+u, thus b (a−m)v = au.

Baby steps: We calculate ai for all 0 ≤ i < m and we store them in
a computer memory.
Suitable implementation - (balanced binary) search tree T ,
where T (g) = i in case ai = g , and T (g) =⊥ for others g ∈ G .
The space complexity is O(

√
n) and each searching takes

O(len(n)) time.

Alena Gollová Discrete logarithm 19/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Baby step/giant step algorithm
Pohling-Hellman algorithm

Computing discrete logarithms

Baby step/giant step algorithm

Giant steps: We compute b(an−m)j for 0 ≤ j < m′, until the result
equals to one of the baby steps results.
If the same results occurre, then i = u and j = v , so we get
dloga(b) = x = vm + u.

Time complexity - we perform at most 2
√
n multiplications in the

group G and
√
n searches in the tree T . (The time O(len(n)) for

searching is shorter than the time for multipling in any group.)
The time complexity is O(

√
n) = O(2

1
2 len(n)) multiplications in G ,

so exponential with half of the exponent compared to brute force.

The space complexity is also exponential O(
√
n) = O(2

1
2 len(n)),

which a is much bigger problem.

Alena Gollová Discrete logarithm 20/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Baby step/giant step algorithm
Pohling-Hellman algorithm

Computing discrete logarithms

Example

The group Z∗37 is cyclic of order n = 36 with a generator a = 2.
Calculate dlog2(7) in the group Z∗37.

We put m =
√

36 = 6, then m′ = 36
6 = 6.

Thus x = dlog2(7) = 6v + u, where 0 ≤ u, v ≤ 5.

7 = 2x = 26v+u, hence, 2u = 7(2−6)v = 7(230)v = 7 · 11v

Baby steps: 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16, 25 = 32
Giant steps: 7 · 110 = 7, 7 · 111 = 3, 7 · 112 = 33, 7 · 113 = 30,
7 · 114 = 34, 7 · 115 = 4 (we are multiplying by 11 succesively)
The equality occured for 22 = 4 = 7 · 115, so u = 2, v = 5
and dlog2(7) = 6 · 5 + 2 = 32.

Alena Gollová Discrete logarithm 21/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Baby step/giant step algorithm
Pohling-Hellman algorithm

Computing discrete logarithms

Remarks
Pollard’s ρ-method for computing discrete logarithms is a
probabilistic algorithm operating in expected time of
O(
√
n) = O(2

1
2 len(n)) multiplications in G . An advantage of it

is the polynomial space complexity.
Published by John Pollard in 1978.

The index calculus is a subexponential algorithm for discrete
logarithms that works only for subgroups of Z∗p.

Its time complexity is O(e(2
√
2+o(1))

√
ln(p) ln(ln(p)))).

We will introduce it as the SEDL algorithm later.

Alena Gollová Discrete logarithm 22/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Baby step/giant step algorithm
Pohling-Hellman algorithm

Computing discrete logarithms

Pohling-Hellman algorithm
Let G be a cyclic group of order n with a generator a, let b ∈ G .
If the factorization of n is known, then the computation of
dloga(b) could be sped up.

If |G | = n =
∏k
i q
ei
i , then we can compute discrete logarithms

in subgroups of orders qeii and use the Chinese reminder
theorem.

If ax = b in the group G , then (ani)x = bni , where ni = n/qeii . We
compute xi = dlogani (b

ni) in the subgroup Hi = 〈ani 〉 of order qeii
for each 1 ≤ i ≤ k. So we obtain a residual system of k equations
x ≡ xi (mod qeii) whose solution is x = dloga(b).

If |G | = q is prime, we use the Baby step/giant step
algorithm. The required time is O(q

1
2) multiplications in G .

Alena Gollová Discrete logarithm 23/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Baby step/giant step algorithm
Pohling-Hellman algorithm

Computing discrete logarithms

Pohling-Hellman algorithm

If |G | = qe is a power of a prime, then computation of a
discrete logarithm can be converted recursively to calculations
of e discrete logarithms in the subgroup of order q. The time
required for it is O(eq

1
2 + e len(q)) multiplications in G .

If ax = b in the group G , then x = xe−1qe−1 + · · ·+ x1q + x0 < qe .
We will compute the digits 0 ≤ xi < q successively from x0 till xe−1
as discrete logarithms in the subgroup H = 〈a(qe−1)〉 of order q.
Powering the equation ax = b to qe−1 and using r(a) = qe we get
(a(q

e−1))x0 = b(q
e−1) and we calculate x0. Then we power the

equation ax = b to qe−2 and we calculate x1. Continuing to xe−1 we
get the q-ary expansion for x .

Each call involves counting two powers with exponent less
than qe . A recursion is called e−times.

Alena Gollová Discrete logarithm 24/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Baby step/giant step algorithm
Pohling-Hellman algorithm

Computing discrete logarithms

Pohling-Hellman algorithm

If q is the largest prime in the factorization n = |G |, the time
required to compute a discrete logarithm in the group G is
determined by computation in the subgroup of order q.
The time complexity is roughly O(q

1
2) multiplications in G .

The algorithm was published by Stephen Pohling and Martin
Hellman in 1978 as a Pohling-Hellman attack on the
Diffie-Hellman key establishment. If large n = |G | is a product
of small primes, then the protocol is not secure.

Alena Gollová Discrete logarithm 25/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Baby step/giant step algorithm
Pohling-Hellman algorithm

Computing discrete logarithms

Example

The group G = Z
∗
37 is cyclic of order n = 36 with a generator

a = 2. Calculate x = dlog2(7) in the group Z∗37.

n = 36 = 22 · 33 = 4 · 9.
Let x ∈ Z36 have residues θ(x) = (x ′, x ′′) ∈ Z4 × Z9.
The equality 7 = 2x in the group G implies equalities:

79 = (29)x = (29)x
′

in the subgroup H ′ of order 4 with a
generator 29, where 29 = 31, 79 = 1, so x ′ = dlog31(1) = 0

74 = (24)x = (24)x
′′

in the subgroup H ′′ of order 9 with a
generator 24, where 24 = 16, 74 = 33, so x ′′ = dlog16(33) = 5
(we use the baby step/giant step algorithm for H ′′).

From the Chinese reminder theorem, x = θ−1(0, 5) = 32.

Alena Gollová Discrete logarithm 26/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Baby step/giant step algorithm
Pohling-Hellman algorithm

Computing discrete logarithms

Example

x ′′ = dlog16(33) = 5 in the subgroup H ′′ of order 9 = 32 with a
generator 16 can be calculated recursively:
Let’s denote x ′′ = 3x1 + x0, where 0 ≤ x0, x1 < 3.

The third power of the equation 33 = 16x
′′

= 163x1+x0 gives
333 = 169x1+3x0 = 163x0 (we count modulo 9 in exponent).
Now 163 = 26, 333 = 10, so x0 = dlog26(10) = 2.

We put x0 into the original equation and get 33 = 163x1+2.
Hence 163x1 = 33 · 16−2 = 26, so x1 = dlog26(26) = 1.

We have found x ′′ = 3 · 1 + 2 = 5.

Alena Gollová Discrete logarithm 27/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Finding a generator for Z∗p

An element a is a generator of a cyclic group G of order n in case
ad 6= 1 for each proper divisor d of n. Moreover, it is sufficient to
check only the maximal proper divisors of n.

So to check if a is a generator of G , we need to know the
factorization of n = |G |. Otherwise, we cannot do it.

In the following section we work with groups Z∗p, even if all the
algorithms would work analogously for any cyclic group.

The time complexity is computed due to multiplication in Zp,
where multiplying two numbers is estimated with time O(len(p)2).

Alena Gollová Discrete logarithm 28/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Finding a generator for Z∗p

Algorithm 1

Let p be a prime and p − 1 =
∏k
i=1 q

ei
i be factorization of |Z∗p|.

All calculations are done in Zp.

repeat
select a ∈ Z∗

p at random
GEN ← true, i ← 1 [the element a can be a generator]
repeat

if a
p−1
qi = 1 then GEN ← false endif

i ← i + 1
until not GEN or i > k

until GEN

output a

Alena Gollová Discrete logarithm 29/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Finding a generator for Z∗p

Correctness of the algorithm 1

The algorithm 1 stops because Z∗p is a cyclic group.

The element a in the output is a generator of Z∗p due to the
following statement.

Claim
An element a is a generator of a cyclic group G of order n if and
only if a

n
p 6= 1 for each prime p, where p | n.

Alena Gollová Discrete logarithm 30/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Finding a generator for Z∗p

Time complexity of the algorithm 1

A cyclic group of order n has a ϕ(n) possibilities how to
choose a generator. We compute the probability that a
randomly chosen element from Z

∗
p is a generator:

P[a is gen] =
ϕ(p − 1)

p − 1
=

k∏
i=1

qi − 1
qi

≥
k+1∏
i=2

i − 1
i

=
1
k + 1

The average number of random selections will therefore be at
most k + 1. (Later on, we will derive this more precisely,
introducing a random variable L = the number of repeat-until
cycles, and the expectation value of this random variable will
be E (L) ≤ k + 1.)

Alena Gollová Discrete logarithm 31/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Finding a generator for Z∗p

Time complexity of the algorithm 1
In each cycle, we compute at most k powers with exponent
less than p using the repeated squaring algorithm, so we need
time O(k len(p)3).

The total expected time is O(k2 len(p)3), where k is the
number of distinct primes in the factorization of p − 1.
The expected time is also O(len(p)5), since k < len(p).

Alena Gollová Discrete logarithm 32/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Finding a generator for Z∗p

Algorithm 2

Let p be a prime and p − 1 =
∏k
i=1 q

ei
i be a factorization of |Z∗p|.

All calculations are done in Zp.

for i ← 1 to k do
repeat

select b ∈ Z∗p at random
bi ← b

p−1
qi

until bi 6= 1

ai ← b
p−1
(q
ei
i)

a←
∏k
i=1 ai

output a

Alena Gollová Discrete logarithm 33/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Finding a generator for Z∗p

Correctness of the algorithm 2

The algorithm 2 stops because Z∗p is a cyclic group, so it
contains elements of all orders which divide the group order.

The element ai has order qeii (see the following statement),
and due to the relatively primeness of orders of different ai ’s,
the output element a has order

∏k
i=1 q

ei
i = p − 1, so it is a

generator of Z∗p.

Claim
Let q be a prime and e ≥ 1 a natural number.
Let an element c of an abelian group satisfies c(q

e) = 1 and
c(q

e−1) 6= 1, then the order of the element c is qe .

Alena Gollová Discrete logarithm 34/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Finding a generator for Z∗p

Time complexity of the algorithm 2

The element bi = b
p−1
qi 6= 1 has order qi .

The probability that for a randomly chosen element b ∈ Z∗p its
p−1
qi

’th power differs from 1 is

P[bi 6= 1] =
qi − 1
qi

≥ 1
2
.

On average, each of the k repeat-until cycles is repeated
twice, calculating always one power by the repeated squaring
algorithm.

The total expected time is O(2k len(p)3), where k is the
number of distinct primes in the factorization of p − 1.
The expected time is also O(len(p)4), since k < len(p).

Alena Gollová Discrete logarithm 35/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Finding an element of order q in Z
∗
p

Algorithm 3

Let p be a prime and q be a prime such that q | p − 1.
All calculations are performed in Zp.

repeat
choose randomly b ∈ Z∗

p

c ← b
p−1
q

until c 6= 1

output c

Correctness and time complexity

The algorithm is correct, the expected running time is O(len(p)3).
Every element of order q can be found with equal probability.

Alena Gollová Discrete logarithm 36/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Finding an element of order q in Z
∗
p

Example

For p = 317, p − 1 = 22 · 79.
We are looking for an element of order 79 in Z∗317.
We choose b = 2. Since 24 = 16 6= 1, c = 16 has order 79.

We have a subgroup G = 〈16〉 of order 79 in the group Z∗317
and we can use it for ElGamal encryption.

Group informations in the ”phone book”: (p, n, a) = (317, 79, 16)

multiply modulo p = 317, messages 0 < m < 317

in the exponent count modulo n = 79, jepices keys 0 < y < 79

a group generator is the element a = 16

Alena Gollová Discrete logarithm 37/38

Diffie-Hellman and ElGamal protocols
Computing discrete logarithms

Finding a generator for Z∗
p

Discrete logarithm

Literature
Shoup: A Computational Introduction to Number Theory and
Algebra. Chapter 11.
http://shoup.net/ntb/

Alena Gollová Discrete logarithm 38/38

	Diffie-Hellman and ElGamal protocols
	Discrete logarithm
	Diffie-Hellman and ElGamal protocols
	Security of both protocols

	Computing discrete logarithms
	Baby step/giant step algorithm
	Pohling-Hellman algorithm

	Finding a generator for Zp*

