
Probabilistic algorithms

Mathematical Cryptography,
Lectures 17 - 18

Alena Gollová Probabilistic algorithms 1/31

Contents

1 Probabilistic algorithms
Probabilistic algorithms
Discrete probability distributions
Generate and test algorithm

2 Generating random numbers
Generating random numbers
Generating random primes
Generating random factorized numbers

Alena Gollová Probabilistic algorithms 2/31

Probabilistic algorithms

Generating random bits

Suppose we have an algorithm that generates a random bit (we’ll
leave aside how). So we have a new instruction, on the same level
as the arithmetic instructions ”sum of two bits” and ”product of
two bits”,

γ ← RAND,

which randomly assigns into the variable γ zero or one so that

P[γ = 1] = P[γ = 0] = 1
2 ,

the result of the RAND instruction does not dependent on its
previous calls.

We will assume that one call of the RAND instruction takes
constant time O(1).

Alena Gollová Probabilistic algorithms 3/31

Probabilistic algorithms

Definition
Probabilistic algorithms are algorithms that use the RAND
instruction.

Deterministic algorithms do not use the RAND instruction.

In algorithm, we will denote random generation as follows:

y
6c←− {0, 1} generates a random bit at time O(1)

y
6c←− {0, 1}×l generates a string of length l of random bits

at time O(l)

Alena Gollová Probabilistic algorithms 4/31

Probabilistic algorithms

For a given probabilistic algorithm A and an input x , we introduce
random variables:

LOOPS = number of loop iterations executed in a given run
of the algorithm

LOOPTIME = time for executing one loop

TIME = total running time of the algorithm

OUTPUT = value of the output at a given execution of the
algorithm

The values of these random variables will depend on results of the
RAND instructions in a given run of the algorithm A with input x .

We are interested in the expected running time of the algorithm A
with input x (the expectantion of the random variable TIME), and
in the probability distribution of the random variable OUTPUT .

Alena Gollová Probabilistic algorithms 5/31

Probability space

More precisely, we create a countable probability space simulating
a behavior of the probabilistic algorithm A with input x under
different outcomes of the RAND instructions.

Ω = {ω ∈ {0, 1}×l , l ∈ N;ω = exact execution path}
An exact execution path is a sequence 0 a 1 in which each
member corresponds to one algorithm instruction, so the last
member corresponds to the HALT instruction. Furthermore, if
the i−th instruction is RAND, then the i−th member is used
as the result of the RAND instruction.

P(ω) = 1
2|ω| , where |ω| = l is the length of the sequence ω.

It can be shown that
∑

ω∈Ω 2−|ω| = α ≤ 1. We say that the
algorithm A stops at input x with probability α. If α = 1,
then P : Ω 7→< 0, 1 > is a probability function on Ω.

Alena Gollová Probabilistic algorithms 6/31

Random variable

The random variables will then be mappings defined on Ω:

TIME (ω) = |ω|
OUTPUT (ω) = the output of the algorithm A with input x , if
the sequence ω simulates the algorithm execution (it has
results of the RAND instructions in the corresponding places).

Then we calculate the probability that the running time equals to l
as follows:

P[TIME = l] = P({ω ∈ Ω,TIME (ω) = l}) = s
2l , where

s =the number of exact execution paths of length l .

We will treat random variables on an intuitive level, without going
into the details of the computation in the relevant probability
space.

Alena Gollová Probabilistic algorithms 7/31

Discrete probability distributions

Discrete probability distributions
Let the random variable X take countably many values from the
set M = {xi , i ∈ I}, where I ⊆ N.
A probability function P is any nonnegative function from M to R
that satisfies

∑
i∈I P[X = xi] = 1.

A probability function defines a discrete probability distribution of
the random variable on the set M.

Expectation of a random variable
The expectation of the random variable X is defined as a weighted
average: E (X) =

∑
i∈I xiP[X = xi].

It is a linear function, E (aX + bY) = aE (X) + bE (Y) for any
random variables X ,Y on the set M and a, b ∈ R.

Alena Gollová Probabilistic algorithms 8/31

Discrete probability distributions

A random variable X has a uniform distribution on the set
{1, 2, . . . ,m} in case P[X = i] = 1

m for every 1 ≤ i ≤ m.
The expectation is E (X) = m+1

2 .

A random variable X has an alternative distribution with
parameter p on the set {0, 1} in case
P[X = 1] = p, P[X = 0] = 1− p.
The expectation is E (X) = p.

The random variable X has a geometric distribution with
parameter p on the set {1, 2, 3, . . .} = N

+ in case
P[X = i] = (1− p)i−1p for every i ≥ 1.
The expectation is E (X) = 1

p .
(If an experiment has an alternative distribution with the probability
of success p, then the geometric distribution gives the probability
that the first success occurs in the i−th iteration of the experiment.)

Alena Gollová Probabilistic algorithms 9/31

Probabilistic algorithms

Algorithm - coin toss until heads comes up

repeat y
6c←− {0, 1}

until y = 1

Algorithm analysis

The probability that the algorithm stops after one cycle is 12 .
The random variable LOOPS has a geometric distribution with
parameter p = 1

2 , the expected number of loops is E (LOOPS) = 2.

The probability that the number of loops is at least k is equal to
P[LOOPS ≥ k] = 1

2k−1 , so lim
k→∞

P[LOOPS ≥ k] = 0.

The algorithm stops with probability 1, even though the number of
algorithm steps is not bounded. The situation that the algorithm
does not stop has zero probability.

Alena Gollová Probabilistic algorithms 10/31

Probabilistic algorithms

Algorithm GT (= Generate and test)

We have two probabilistic algorithms A(x) and B(x , y), where
B returns true or false. The algorithm GT (x) combines them
both:

repeat y ← A(x)

until B(x , y)

output y

Analysis of the GT algorithm
If A stops with probability 1 on input x and for each output y
it is true that B stops with probability 1 on input (x , y), while
for some y the probability that B(x , y) returns true is
positive, then GT also stops with probability 1 on input x .

Alena Gollová Probabilistic algorithms 11/31

Probabilistic algorithms

Analysis of the GT algorithm
Let H1 be the event that the algorithm halts after the first loop
iteration, and T be the set of all possible outputs of the algorithm
A(x).

The random variable LOOPS has a geometric distribution
with parameter p = P[H1].
E (TIME) = E (LOOPS)E (LOOPTIME) = 1

pE (LOOPTIME)

For each t ∈ T , P[OUTPUT = t] = P[OUTPUT = t |H1]

Alena Gollová Probabilistic algorithms 12/31

Generating random numbers

Algorithm RN (= Random number)

Input: a natural number m ≥ 1
Output: a random natural number less than m

l ← dlog2(m)e (So 2l−1 < m ≤ 2l)
repeat

y
6c←− {0, 1}×l (String type)

n←
l−1∑
i=0
yi2i (Integer type)

until n < m

output n

Alena Gollová Probabilistic algorithms 13/31

Generating random numbers

Analysis of the RN algorithm
Algorithm stops with probability 1.

LOOPS has a geometric distribution with parameter
p = m

2l >
1
2 , so the expected number of loop iterations is

E (LOOPS) < 2.

The time required for one loop is O(l), the expected time is
E (TIME) ∈ O(2l) = O(l), where l = len(m).

The output is uniformly distributed over the set
{0, . . . ,m − 1}, so P[OUTPUT = n] = 1

m for each
0 ≤ n ≤ m − 1.

Alena Gollová Probabilistic algorithms 14/31

Generating random numbers

Algorithm RN (= Random number)

Input: a natural numbers 1 ≤ m1 < m2
Output: a random natural number from the interval {m1, . . . ,m2}

l ← dlog2(m2 + 1)e
repeat

y
6c←− {0, 1}×l (String type)

n←
l−1∑
i=0
yi2i (Integer type)

until m1 ≤ n ≤ m2
output n

The expected time is O(l) and the output is uniformly distributed
over the set {m1, . . . ,m2}.

Alena Gollová Probabilistic algorithms 15/31

Generating random numbers

Algorithm GT (= Generate and test) more specifically

Input: a finite set T and its non-empty subset T ′

Output: a random element of T ′

repeat y
6c←− T

until y ∈ T ′

output y

We assume that we can randomly generate an element from T in
the expected time O(f) and that the output of this algorithm is
uniformly distributed over the set of T .
We further assume that we can efficiently test that y ∈ T ′ in the
expected time O(g), and that T ′ 6= ∅.
Moreover in doing so, both algorithms stop with probability 1.

Alena Gollová Probabilistic algorithms 16/31

Generating random numbers

Analysis of the GT algorithm
The GT algorithm stops with probability 1.

LOOPS has a geometric distribution with parameter
p = |T ′|

|T | > 0, so the expected number of loops is

E (LOOPS) = |T |
|T ′| .

The expected time of one loop is E (LOOPTIME) ∈ O(f + g),
so the total expected time is E (TIME) ∈ O(|T ||T ′|(f + g)).

The output is uniformly distributed over the set T ′, so
P[OUTPUT = t] = 1

|T ′| for each t ∈ T ′,
P[OUTPUT = t] = 0 for each t ∈ T \ T ′.

Alena Gollová Probabilistic algorithms 17/31

Generating random primes

Algorithm RP (= Random prime)

Input: a natural number m ≥ 2
Output: a random prime between 2 and m

(or a random l−bit prime)

repeat n
6c←− {2, . . .m}

(resp. n
6c←− {2l−1, . . . , 2l − 1})

until IsPrime(n)

output n

An IsPrime(n) algorithm for testing primality is a ”black box” for
now, which returns true or false for every n ∈ N.

Alena Gollová Probabilistic algorithms 18/31

Density of prime numbers

For the time analysis of the algorithm RP, we need to estimate
how many primes there are and what is their ”density” among the
natural numbers.

Euclidean theorem
There are infinitely many primes.

Proposition
It can be found n consecutive composite numbers for every n ∈ N.
(There are arbitrarily large ”holes” between primes.)

Alena Gollová Probabilistic algorithms 19/31

Density of prime numbers

Let π(m) denote the number of primes between 1 and m,
including m.

Chebyshev’s theorem

For every natural number m ≥ 2, π(m) ∈ Θ(m
ln(m)).

Proposition

For each natural number m ≥ 2: π(m) ≥ ln(2)
2 ·

m
ln(m)

.
= 0.35 · mln(m)

Alena Gollová Probabilistic algorithms 20/31

Density of prime numbers

Consequence

Since ln(m) = log2(m)
log2(e)

, it is also true that π(m) ∈ Θ(m
len(m)),

or there exist c1, c2 > 0 such that for all m ≥ m0 holds:

c1
1

len(m)
<
len(m)

m
< c2

1
len(m)

Note
There is together 168 primes up to m = 1000.

The Chebyshev’s estimate is m
ln(m) = 1000

ln(1000)
.

= 145.

While len(1000)
.

= 10, our estimate m
len(m) = 1000

len(1000)
.

= 100 is
slightly more inaccurate.

Alena Gollová Probabilistic algorithms 21/31

Density of prime numbers

Bertrand’s postulate

For every natural number m ≥ 1, π(2m)− π(m) > m
3 ln(2m) .

Or, there is Ω(m
ln(m)) primes between m and 2m.

Consequence
There exists c > 0 such that for all m ≥ m0 the following holds:

c
1

len(m)
<
π(2m)− π(m)

m

Alena Gollová Probabilistic algorithms 22/31

Generating random primes

Analysis of the RP algorithm for deterministic IsPrime(n)

We assume that the algorithm IsPrime(n) works in time
O(τ(l)) for all n ≤ m, where l = len(m), and that τ(l) > l .
Then the time required for one loop is O(τ(l)).

LOOPS has a geometric distribution with parameter
p = π(m)

m−1 , or with parameter p = π(2l)−π(2l−1)
2l−1 for an l−bit

prime. In both cases we have an estimate p > c
l for an

appropriate constant c .= 1
3 , thanks to the Chebyshev’s and

Bertrand’s theorems.

The expected time is E (TIME) ∈ O(lτ(l)).

The output is uniformly distributed over the set of all primes.

Alena Gollová Probabilistic algorithms 23/31

Generating random primes

Analysis of the RP algorithm for probabilistic IsPrime(n)

Let the algorithm IsPrime(n) be a probabilistic algorithm that is
burdened with a one-sided error: for a prime n the answer true is
certain, for a composite number n, the answer true is also possible
with probability at most ε.

We will assume that the algorithm IsPrime(n) works in
expected time O(τ̃(l)) for all n ≤ m, where l = len(m), and
that τ̃(l) > l . Then the expected time for one loop is O(τ̃(l)).

LOOPS has a geometric distribution with parameter
p > π(m)

m−1 , since the algorithm may terminate even for a
composite number n. Thanks to Chebyshev’s theorem, we get
p > c

l for suitable c .= 1
3 .

The expected time is
E (TIME) = E (LOOPTIME)E (LOOPS) ∈ O(l τ̃(l)).

Alena Gollová Probabilistic algorithms 24/31

Generating random primes

Analysis of the RP algorithm for probabilistic IsPrime(n)

P[OUTPUT = n] = β < 1
π(m) is the same for every prime

n ≤ m.

P[OUTPUT = n] > 0 also for every composite n ≤ m.

We estimate the total probability of the event that the output
is a composite number:

P[n composite|IsPrime(n)] =P[IsPrime(n)|n composite]P[n composite]
P[IsPrime(n)]

< ε
π(m)
m

< εl
c

The probability that the output is composite is O(εl).
(The estimate is very rough, but sufficient in order to answer
the question how small ε should we choose.)

Alena Gollová Probabilistic algorithms 25/31

Generating random factorized numbers

Algorithm RS (= Random non-increasing sequence)

Input: a natural number m ≥ 2
Output: a non-increasing sequence of numbers between 1 and m

n0 ← m, k ← 0
repeat

k ← k + 1
nk

6c←− {1, . . . , nk−1} (the same number can be chosen again)

until nk = 1

output (n1, . . . , nk)

The expected time is O(l2), where l = len(m) (the intervals will
roughly halve, we expect log2(m) random selections).

Alena Gollová Probabilistic algorithms 26/31

Generating random factorized numbers

Algorithm RFN (= Random factorized number)

Input: a natural number m ≥ 2, (or number of bits l)
Output: a random factorized number n ≤ m, (or l−bit n)

repeat
generate a non-increasing sequence of numbers up to m using
the RS algorithm, we get the sequence (n1, . . . , nk) in which
numbers can repeat
select a subsequence of all primes using IsPrime(ni), we get
the sequence (p1, . . . , ps) and we keep all duplicates
n←

∏s
i=1 pi (once multiplication exceeds m, we will not

multiply further)

x
6c←− {1, . . . ,m} (to ensure that n is randomly large enough)

until x ≤ n ≤ m (or 2l ≤ n < 2l+1)

output n, (p1, . . . , ps)

Alena Gollová Probabilistic algorithms 27/31

Generating random factorized numbers

Analysis of the RFN algorithm

For a deterministic IsPrime(n) operating in time O(τ(l)):

The expected time is E (TIME) ∈ O(l2τ(l)).

The output is uniformly distributed over the set {1, . . . ,m}.

For a probabilistic IsPrime(n) operating in expected time O(τ̃(l)),
which can return true for a composite number with probability at
most ε:

The expected time is E (TIME) ∈ O(l2τ̃(l)).

All correctly factorized outputs have the same probability.

The total probability that the output is incorrectly factorized
is O(εl2) for sufficiently small ε, roughly εl ≤ 1

2 .

Alena Gollová Probabilistic algorithms 28/31

Generating a random prime p with factorized p − 1

Algorithm RPF

Input: a natural number m ≥ 2, (or number of bits l)
Output: a random prime number p ≤ m + 1 (or l−bit p), together
with a factorization of p − 1

repeat
generate a random factorized number less then m (or l−bit)
using the RFN algorithm, we get n, (p1, . . . , ps)

until IsPrime(n + 1)

p ← n + 1

output p, (p1, . . . , ps) is the factorization of p − 1

Alena Gollová Probabilistic algorithms 29/31

Generating a random prime p with factorized p − 1

Analysis of the RPF algorithm

For probabilistic IsPrime(n) operating in expected time O(τ̃(l)),
which can return true for a composite number with probability at
most ε:

The expected time is O(l3τ̃(l)).

Every prime p with correctly factorized p − 1 is chosen with
equal probability.

The probability that the output p is not prime or p − 1 is not
correctly factorized is O(εl2) for sufficiently small ε, roughly
εl ≤ 1

2 .

Alena Gollová Probabilistic algorithms 30/31

Probabilistic algorithms

Literature
Shoup: A Computational Introduction to Number Theory and
Algebra. Chapter 9.

For the basics of probability theory, see the same book,
chapter 8, paragraphs 1-4 and 10.

Theorems about primes can be found there in the chapter 5.
http://shoup.net/ntb/

Alena Gollová Probabilistic algorithms 31/31

	Probabilistic algorithms
	Probabilistic algorithms
	Discrete probability distributions
	Generate and test algorithm

	Generating random numbers
	Generating random numbers
	Generating random primes
	Generating random factorized numbers

