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Primality testing

In the previous chapter, we used the IsPrime(n) algorithm for
primality testing as a ”black box”. In this chapter, we will
introduce some primality tests, especially the Miller-Rabin test.

In the second part, we calculate the time complexity of generating
random primes if primality is tested by the Miller-Rabin test,
possibly improved by dividing with small primes up to a certain
bound.
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Deterministic primality testing

Trial division
Claim: A natural number n > 1 is prime if and only if it is not
divisible by any prime p ≤

√
n.

The brute force test of primality: Divide n by all (prime) numbers
up to

√
n.

Time complexity: exponential, O(2
1
2 len(n) len(n)2)

Advantage: for n composite we will find its divisors
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Deterministic primality testing

Deterministic polynomial primality testing
There exists a deterministic algorithm for primality testing
operating in polynomial time, which uses properties of polynomials
over a ring Zn, or polynomials over a field in case n is prime.
The algorithm was investigated by Agrawal, Kayal and Saxena
and published in 2004.

The algorithm operates in time O(len(n)16.5). If using faster
algorithms for integer and polynomial arithmetic, it works in time
O(len(n)10.5+o(1)).

Note
This algorithm is an important theoretical result, but it is
meaningless in practice - the polynomial power is too high.
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Deterministic primality testing

Note

If a computer performes a billion (= 109) divisions per second,
then primality testing of a number n = 10100 .= 2330 would take

1033 years by brute fource,

approximately 107 years by the deterministic AKS algorithm,

only one second by the probabilistic Miller-Rabin algorithm,
with a probability of error less than 2−100, which is almost
zero.
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Probabilistic primality testing

Probabilistic primality testing with one-sided error
Probabilistic primality tests use some property that holds for all
a ∈ Z∗n in case n is prime (all elements in Z∗p truthfully testify that
p is prime), while for n composite, the property holds only for
some a ∈ Z∗n (these elements are false witnesses to primality of the
composite number n).

In the test, we k−times randomly choose some a ∈ Z∗n and verify
our property. If all chosen a ∈ Z∗n have the property, we declare n
to be prime. The probability that we can be wrong and declare the
composite number n to be prime depends on the number of false
witnesses. The test is therefore burdened by one-sided error.
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Probabilistic primality testing

We introduce the Fermat test and the Miller-Rabin test for
primality.

First, we always look at the property which they use, and we
estimate number of false witnesses to primality for a composite
number n in each test.

We also show that the properties may not characterize the prime
numbers, or there exist pseudo-prime numbers.
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The Fermat test

Fermat’s little theorem

Let p be a prime. For every a ∈ Z∗p, ap−1 = 1 in Zp.

Witnesses to primality for the Fermat test

Let n > 1. Let’s denote Kn = {a ∈ Z∗n, an−1 = 1}.

We could define Kn = {a ∈ Zn, an−1 = 1}, yet Kn ⊆ Z∗n.
Indeed, if an−1 = 1, then a has an inverse a−1 = an−2, so a ∈ Z∗n.
It doesn’t matter whether we choose a random element from Zn or
from Z

∗
n, the number of witnesses to primality is the same.
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The Fermat test

Theorem

If n is prime, then Kn = Z
∗
n = Z

+
n .

If n is composite and Kn 6= Z
∗
n, then |Kn| ≤ 1

2 |Z
∗
n| < 1

2 |Z
+
n |.

The proof relies on the fact that Kn is a subgroup of Z∗n.
The situation that Kn = Z

∗
n can occur for the so-called Carmichael

numbers.
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The Fermat test

Testing if a ∈ Kn (a boolean procedure)

Input: n > 1, a ∈ Z∗n (or a ∈ Z+
n )

Output: True or false

b ← an−1 in Zn
if b = 1 then return true

else return false

Time complexity: O(len(n)3) (repeated squaring algorithm)
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The Fermat test

The Fermat primality test - algorithm F(·, k)

Input: n > 1; (we test whether n is prime)
parameter k ≥ 1 (number of random witnesses)

Output: True or false
repeat k times

a
6c←− Z+

n (or a
6c←− Z∗n)

if a 6∈ Kn then return false endif enddo

return true

Time complexity in the worst case: O(k len(n)3)
The expected time for n composite (but not Carmichael) is
O(2 len(n)3).
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The Fermat test

Probability of error
If n is prime, then the Fermat test always answers true correctly.

If n is composite, but not Carmichael, then the probability of error
(the test answers true) is at most ε = 1

2k , where k is the number
of independently randomly chosen witnesses a ∈ Z+

n .

For Carmichael numbers, the probability of error is much greater

(especially when choosing a
6c←− Z∗n, Carmichael numbers are

indistinguishable from primes by the Fermat test).

Remark

The random choice a ∈ Z+
n \ Z∗n allows to find a factor of n, which

is d = gcd(a, n) > 1.
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Carmichael numbers

Definition
A Carmichael number is a composite number n such that
an−1 = 1 holds for every a ∈ Z∗n.

Carmichael numbers are rare, yet they are infinitely many.

The only Carmichael number up to 1000 is 561 = 3 · 11 · 17,
the nexts are 1105 = 5 · 13 · 17, 1729 = 7 · 13 · 19.

Within 1016 there are roughly 2.7 · 1014 prime numbers and only
2.4 · 105 Carmichael numbers.
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Carmichael numbers

Proposition

A composite number n is Carmichael if and only if λ(n) | n − 1,
where λ(n) = exp(Z∗n) is a Carmichael function.

Proposition
Each Carmichael number n is of the form n = p1 · · · · · pr , where

pi are different odd primes (or n is odd and square free),

r ≥ 3,

pi − 1 | n − 1 for every 1 ≤ i ≤ r .
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The Miller-Rabin test

Proposition
Let p > 2 be a prime.
The equation x2 = 1 has exactly two solutions in the group Z∗p,
namely x = ±1, so there are only trivial square roots of 1 in Z∗p.

Witnesses to primality for the Miller-Rabin test

Let n > 1 be an odd number, n − 1 = t 2h for t odd.

Ln = {a ∈ Z∗n, an−1 = 1 and when at 2
j

= 1, then at 2
j−1

= ±1
for all 1 ≤ j ≤ h}

We could define Ln as a subset of Zn and define the same set Ln.
Obviously, Ln ⊆ Kn.
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The Miller-Rabin test

Note

The property that the equation x2 = 1 has exactly two solutions
x = ±1 in Z∗n does not characterize prime numbers. This property
holds in every cyclic group Z∗n, so it also holds for n = pe , where
p > 2 is a prime, e ≥ 1. (And also for n = 2, n = 4, n = 2pe ,
where p > 2 is prime, but we are not interested in even n now.)

For such n is Ln = Kn (the Miller-Rabin test has as many false
witnesses to primality as the Fermat test).
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The Miller-Rabin test

Theorem

Let n be an odd number. If n is prime, then Ln = Z
∗
n = Z

+
n .

If n > 9 is composite, then |Ln| ≤ 1
4 |Z
∗
n| < 1

4 |Z
+
n |.

Proof notes:

For n = pe , e ≥ 2, where p is an odd prime, is Ln = Kn and
since Z∗n is cyclic, we can compute |Kn| = p − 1 = 1

pe−1 |Z
∗
n|.

For n =
∏r
i=1 p

ei
i , r ≥ 2, pi odd prime numbers, we can show

(it takes some work) that |Ln| ≤ 2
2r |Kerρt2g | ≤

1
2r−1 |Kn|,

where ρt2g : x 7→ x t2g and g = min{h, h1, . . . , hr}, where
n − 1 = t 2h, ϕ(peii ) = ti 2hi and t, ti are odd.

If n is not a Carmichael number, then |Ln| ≤ 1
2 |Kn| ≤

1
4 |Z
∗
n|.

If n is Carmichael, than r ≥ 3, so |Ln| ≤ 1
4 |Kn| = 1

4 |Z
∗
n|.
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The Miller-Rabin test

Testing if a ∈ Ln (a boolean procedure)

Input: n > 1 odd, where n − 1 = t 2h for t odd;
a ∈ Z∗n (or a ∈ Z+

n )
Output: True or false

b ← at in Zn
if b = 1 then return true endif
for j ← 0 to h − 1 do

if b = −1 then return true endif
it b = 1 then return false endif
b ← b2 in Zn enddo

return false

The time complexity is O(len(n)3). The algorithm sequentially
calculates an−1 v Zn using the repeated squaring algorithm.

Alena Gollová Primality testing 19/35



Primality testing
Generating random primes

Deterministic primality testing
Probabilistic primality testing
The Miller-Rabin test

The Miller-Rabin test

The Miller-Rabin primality test - algorithm MR(·, k)

Input: n > 1 (we test whether n is prime),
parameter k ≥ 1 (number of random witnesses)

Output: True or false

if n = 2 then return true endif

if n is even then return false endif
repeat k times (n is odd for now)

a
6c←− Z+

n (or a
6c←− Z∗n)

if a 6∈ Ln then return false endif enddo

return true

The time complexity is at worst O(k len(n)3).
The expected time for n composite is O(43 len(n)3).
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The Miller-Rabin test

Probability of Error
If n is prime, then the Miller-Rabin test always answers true.

If n is composite, then the probability of error (that MR(·, k) still
answers true) is at most ε = 1

4k .

Note
A random choice of a ∈ Kn \ Ln allows us to factorize n into two
factors. The element a generates in its powers a non-trivial square
root of 1 (c 6= ±1, but c2 = 1 in Zn), thus d = gcd(c ± 1, n) > 1
are factors of n.
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Generating random primes

RP algorithm (=Random Prime)

Input: a natural number m ≥ 2, (let’s denote l = len(m)),
Output: a random prime number between 2 and m

repeat n
6c←− {2, . . .m}

until IsPrime(n)

output n

IsPrime(·) will be implemented as the Miller-Rabin test MR(·, k)
with parameter k for now.
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Generating random primes

Analysis of RP algorithm using MR(·, k) - OUTPUT

MR(·, k) is a probabilistic test with one-sided error, for n
composite, the probability of error is at most ε = 1

4k .
We know from the previous chapter:

Every prime up to m .
= 2l can be found with equal probability.

The probability that the output is a composite number up to
m .

= 2l is O(εl) = O( 14k l).

If we want to find a random 1024−bit prime with error probability
at most 1

2100 , we should choose k = 55 witnesses.
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Generating random primes

Remark
In reality, the probability of error is even smaller, especially when
generating large primes. We estimated the number of false
witnesses to primality in the Miller-Rabin test by

|Ln| ≤ 2
2r |Kn| ≤

1
2r |Z

∗
n| (for n not Carmichael),

where r is the number of primes in the factorization of n.
So most of composite numbers has very few false witnesses to
primality.

Let’s denote by γ(m, k) the probability that the output of the
algorithm RP(m) using MR(·, k) is a composite number.
For large m, γ(m, 1) (one witness) is already very small.

γ(2200, 1) ≤ 1
8 , γ(2300, 1) ≤ 1

219 , γ(2500, 1) ≤ 1
255

To generate a 512−bits prime with error probability less than 1
2100 ,

it is sufficient to choose k = 2 witnesses.
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Generating random primes

Time analysis of RP algorithm using MR(·, k)

Since last time, we know:

The expected number of loops is O(l), where l = len(m),
since LOOPS has a geometric distribution with parameter
p > π(m)

m−1 ∈ O(1l ) (Chebyshev’s theorem).
So we will have to test on average l numbers up to m = 2l

before we find one prime number.

The algorithm MR(·, k) works in time O(kl3) at worst.

The expected time is E (TIME ) ∈ O(kl4).
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Generating random primes

Time analysis of RP algorithm using MR(·, k)

However, this estimate of time is very pessimistic because if n is
composite the probability of finding a witness to compositeness is
at least 34 . The random variable LOOPS in the Miller-Rabin test
has an ”almost geometric” distribution, so we can expect
E (LOOPS) = 4

3 choises.

A composite n is usually recognized by one or two Miller-Rabin
witnesses, only for a prime n we check k witnesses in order to be
more sure. Hence:

The expected time is E (TIME ) ∈ O(l4 + kl3).
We test roughly l composite numbers each in time O(l3)
before finding one prime number to test in time O(kl3).
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The Miller-Rabin test - improvement

The Miller-Rabin test with division by small primes -
MRS(·, k)

Most composite numbers are divisible by small primes (every
second by two, every third by three, etc.).
To test the divisibility by small primes can take O(len(n)) time,
while the Miller-Rabin test takes O(len(n)3) time.

We can speed up the primality testing if we first check divisibility
by any prime up to a certain bound s.
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The Miller-Rabin test - improvements

The Miller-Rabin test with division by small primes -
algorithm MRS(·, k)

Input: n > 1 (we test if n is prime),
parameter k ≥ 1 (number of witnesses to primality)
parameter s > 1 (we divide by primes up to the bound s)

Output: True or false
for each prime p ≤ s do

if p | n then if p = n then return true
else return false endif enddo

repeat k times

a
6c←− Z+

n (or a
6c←− Z∗n)

if a 6∈ Ln then return false endif enddo

return true
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Generating random primes

Time analysis of RP algorithm using MRS(·, k)

We estimate how many numbers go into the Miller-Rabin test.
We know that every p−th number is divisible by the prime p.
The probability that a random number n is not divisible by p is
then (1− 1p ). We will assume that beeing not divisible by different
primes are independent events (heuristic argument).
Let p̃ denote the probability that random n is not divisible by any
prime p ≤ s, then:

p̃ =
∏
p≤s

(1− 1
p

) ∈ O(
1

len(s)
)

Merton’s theorem∏
p≤s(1− 1p ) ∈ Θ( 1

ln(s)), where the product is over all primes up to s.
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Generating random primes

Time analysis of RP algorithm using MRS(·, k)

Thus, we can expect that before we find the prime ≤ m, we will
test roughly l = (m) numbers, of which

1
len(s) l numbers will go into the Miller-Rabin test and one or
two witnesses will prove their compositeness (in time O(l3));

the other composite numbers (there are at most l) will be
divisible by some prime up to s, which will be uncovered in
time O(π(s) l) = O( s

len(s) l) for each;

one prime will be tested by all k witnesses in the Miller-Rabin
test in time O(kl3);

The expected time is E (TIME ) ∈ O( 1
len(s) l

4 + s
len(s) l

2 + kl3).
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Generating random primes

Time analysis of RP algorithm using MRS(·, k)

We choose the bound s such that l ≤ s ≤ l2, or s .= l , then
the expected time to find a random prime within 2l using the
MRS(·, k) algorithm is

E (TIME ) ∈ O( 1
len(l) l

4 + kl3)

For example, to find a random 1024−bit prime, we will divide by
primes up to the bound s = 1024. For k = 55 < 26 we expect time
c( 110240 + k230) .

= c237 for a small constant c .= 1.

Supercomputers operating at a rate of 1000 billions (= 1012)
operations per second will find a 1024−bit prime in one second
with nearly a zero probability of error. Computers with a speed of
one billion operations per second would do it in 15 minutes.
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Eratosthenes sieve

Let’s give an algorithm how to find all primes up to the bound s.

Eratosthenes sieve algorithm
Input: s > 1
Output: an array A[2, . . . , s],

where A[i ] = 1 only if i is a prime

for i ← 2 to s do A[i ]← 1 enddo
for i ← 2 to b

√
sc do

if A[i ] = 1 then
j ← i + i
while j ≤ s do A[j ]← 0, j ← j + i enddo
endif

enddo
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Eratosthenes sieve

Analysis of the Eratosthenes sieve algorithm

The space complexity is exponential O(s) = O(2{len(s))!

We estimate the time complexity:
For each prime p ≤

√
s we perform s

p simple operations.

TIME =
∑
p≤
√
s

s
p
< s

∫ √s
1

1
y
dy =

1
2
s ln(s) ∈ O(s len(s))

A more accurate estimate: TIME ∈ O(s len(len(s)), thanks to the
following theorem.

Theorem

Sum over all primes
∑
p≤
√
s
1
p = ln(ln(s)) + O(1).
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The Miller-Rabin test

Note
If the generalized Riemann hypothesis holds, then for every
composite number n there is a witness to compositeness,
a ∈ Zn \ Ln, of size a ≤ 2 len(n)2.

If this is the case, the Miller-Rabin test could be deterministic and
it would work in time O(len(n)5).

The RP algorithm would then find a prime up to m = 2l in time
O( 1
len(l) l

6) (when dividing by primes up to the bound s .= l).
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Primality testing
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