Primality testing

Mathematical Cryptography, Lectures 19 - 20

Alena Gollová Primality testing

1/35

Contents

Primality testing

- Deterministic primality testing
- Probabilistic primality testing
- The Miller-Rabin test

Q Generating random primes

- IsPrime as the Miller-Rabin test
- IsPrime as the Miller-Rabin test with division by small primes

Alena Gollová Primality testing

2/35

Primality testing

In the previous chapter, we used the IsPrime(n) algorithm for primality testing as a "black box". In this chapter, we will introduce some primality tests, especially the Miller-Rabin test.

In the second part, we calculate the time complexity of generating random primes if primality is tested by the Miller-Rabin test, possibly improved by dividing with small primes up to a certain bound.

Deterministic primality testing

Trial division

Claim: A natural number n > 1 is prime if and only if it is not divisible by any prime $p \le \sqrt{n}$.

The brute force test of primality: Divide n by all (prime) numbers up to \sqrt{n} .

Time complexity: exponential, $O(2^{\frac{1}{2}\operatorname{len}(n)}\operatorname{len}(n)^2)$ Advantage: for n composite we will find its divisors

Alena Gollová Primality testing 3/35 Alena Gollová Primality testing 4/35

Deterministic primality testing

Deterministic polynomial primality testing

There exists a deterministic algorithm for primality testing operating in polynomial time, which uses properties of polynomials over a ring \mathbb{Z}_n , or polynomials over a field in case n is prime. The algorithm was investigated by Agrawal, Kayal and Saxena and published in 2004.

The algorithm operates in time $O(\operatorname{len}(n)^{16.5})$. If using faster algorithms for integer and polynomial arithmetic, it works in time $O(\operatorname{len}(n)^{10.5+o(1)})$.

Note

This algorithm is an important theoretical result, but it is meaningless in practice - the polynomial power is too high.

Alena Gollová Primality testing

5/35

Probabilistic primality testing

Probabilistic primality testing with one-sided error

Probabilistic primality tests use some property that holds for all $a \in \mathbb{Z}_n^*$ in case n is prime (all elements in \mathbb{Z}_p^* truthfully testify that p is prime), while for n composite, the property holds only for some $a \in \mathbb{Z}_n^*$ (these elements are false witnesses to primality of the composite number n).

In the test, we k-times randomly choose some $a \in \mathbb{Z}_n^*$ and verify our property. If all chosen $a \in \mathbb{Z}_n^*$ have the property, we declare n to be prime. The probability that we can be wrong and declare the composite number n to be prime depends on the number of false witnesses. The test is therefore burdened by one-sided error.

Deterministic primality testing

Note

If a computer performes a billion (= 10^9) divisions per second, then primality testing of a number $n = 10^{100} \doteq 2^{330}$ would take

- 10³³ years by brute fource,
- approximately 10⁷ years by the deterministic AKS algorithm,
- only one second by the probabilistic Miller-Rabin algorithm, with a probability of error less than 2^{-100} , which is almost zero.

Alena Gollová Primality testing

6/35

Probabilistic primality testing

We introduce the Fermat test and the Miller-Rabin test for primality.

First, we always look at the property which they use, and we estimate number of false witnesses to primality for a composite number n in each test.

We also show that the properties may not characterize the prime numbers, or there exist pseudo-prime numbers.

Alena Gollová Primality testing 7/35 Alena Gollová Primality testing 8/35

The Fermat test

Fermat's little theorem

Let p be a prime. For every $a \in \mathbb{Z}_p^*$, $a^{p-1} = 1$ in \mathbb{Z}_p .

Witnesses to primality for the Fermat test

Let n > 1. Let's denote $K_n = \{a \in \mathbb{Z}_n^*, a^{n-1} = 1\}$.

We could define $K_n = \{a \in \mathbb{Z}_n, \ a^{n-1} = 1\}$, yet $K_n \subseteq \mathbb{Z}_n^*$. Indeed, if $a^{n-1} = 1$, then a has an inverse $a^{-1} = a^{n-2}$, so $a \in \mathbb{Z}_n^*$. It doesn't matter whether we choose a random element from \mathbb{Z}_n or from \mathbb{Z}_n^* , the number of witnesses to primality is the same.

Alena Gollová Primality testing

g

9/35

The Fermat test

Testing if $a \in K_n$ (a boolean procedure)

Input: n > 1, $a \in \mathbb{Z}_n^*$ (or $a \in \mathbb{Z}_n^+$)

Output: True or false

- $b \leftarrow a^{n-1}$ in \mathbb{Z}_n
- if b = 1 then return *true* else return *false*

Time complexity: $O(len(n)^3)$ (repeated squaring algorithm)

The Fermat test

Theorem

If *n* is prime, then $K_n = \mathbb{Z}_n^* = \mathbb{Z}_n^+$. If *n* is composite and $K_n \neq \mathbb{Z}_n^*$, then $|K_n| \leq \frac{1}{2} |\mathbb{Z}_n^*| < \frac{1}{2} |\mathbb{Z}_n^+|$.

The proof relies on the fact that K_n is a subgroup of \mathbb{Z}_n^* . The situation that $K_n = \mathbb{Z}_n^*$ can occur for the so-called Carmichael numbers.

Alena Gollová Primality testing

10/35

The Fermat test

The Fermat primality test - algorithm $F(\cdot, k)$

Input: n > 1; (we test whether n is prime)

parameter $k \ge 1$ (number of random witnesses)

Output: True or false

- repeat k times
 - $a \stackrel{\not \sigma}{\leftarrow} \mathbb{Z}_n^+ \text{ (or } a \stackrel{\not \sigma}{\leftarrow} \mathbb{Z}_n^* \text{)}$
 - if $a \notin K_n$ then return false endif enddo
- return true

Time complexity in the worst case: $O(k \operatorname{len}(n)^3)$ The expected time for n composite (but not Carmichael) is $O(2\operatorname{len}(n)^3)$.

The Fermat test

Probability of error

If n is prime, then the Fermat test always answers true correctly. If n is composite, but not Carmichael, then the probability of error (the test answers true) is at most $\epsilon = \frac{1}{2^k}$, where k is the number of independently randomly chosen witnesses $a \in \mathbb{Z}_n^+$.

For Carmichael numbers, the probability of error is much greater (especially when choosing $a \stackrel{\not C}{\leftarrow} \mathbb{Z}_n^*$, Carmichael numbers are indistinguishable from primes by the Fermat test).

Remark

The random choice $a \in \mathbb{Z}_n^+ \setminus \mathbb{Z}_n^*$ allows to find a factor of n, which is $d = \gcd(a, n) > 1$.

Alena Gollová Primality testing

13/35

15/35

Carmichael numbers

Proposition

A composite number n is Carmichael if and only if $\lambda(n) \mid n-1$, where $\lambda(n) = \exp(\mathbb{Z}_n^*)$ is a Carmichael function.

Proposition

Each Carmichael number n is of the form $n = p_1 \cdot \cdots \cdot p_r$, where

- p_i are different odd primes (or n is odd and square free),
- r > 3,
- $p_i 1 \mid n 1$ for every $1 \le i \le r$.

Carmichael numbers

Definition

A *Carmichael number* is a composite number n such that $a^{n-1} = 1$ holds for every $a \in \mathbb{Z}_n^*$.

Carmichael numbers are rare, yet they are infinitely many.

The only Carmichael number up to 1000 is $561 = 3 \cdot 11 \cdot 17$, the nexts are $1105 = 5 \cdot 13 \cdot 17$, $1729 = 7 \cdot 13 \cdot 19$.

Within 10^{16} there are roughly $2.7 \cdot 10^{14}$ prime numbers and only $2.4 \cdot 10^5$ Carmichael numbers.

Alena Gollová Primality testing

14/35

The Miller-Rabin test

Proposition

Let p > 2 be a prime.

The equation $x^2 = 1$ has exactly two solutions in the group \mathbb{Z}_p^* , namely $x = \pm 1$, so there are only trivial square roots of 1 in \mathbb{Z}_p^* .

Witnesses to primality for the Miller-Rabin test

Let n > 1 be an odd number, $n - 1 = t 2^h$ for t odd. $L_n = \{a \in \mathbb{Z}_n^*, a^{n-1} = 1 \text{ and when } a^{t 2^j} = 1, \text{ then } a^{t 2^{j-1}} = \pm 1 \text{ for all } 1 \le j \le h\}$

We could define L_n as a subset of Z_n and define the same set L_n . Obviously, $L_n \subseteq K_n$.

The Miller-Rabin test

Note

The property that the equation $x^2=1$ has exactly two solutions $x=\pm 1$ in \mathbb{Z}_n^* does not characterize prime numbers. This property holds in every cyclic group \mathbb{Z}_n^* , so it also holds for $n=p^e$, where p>2 is a prime, $e\geq 1$. (And also for n=2, n=4, $n=2p^e$, where p>2 is prime, but we are not interested in even n now.) For such n is $L_n=K_n$ (the Miller-Rabin test has as many false witnesses to primality as the Fermat test).

Alena Gollová Primality testing

17/35

19/35

The Miller-Rabin test

Testing if $a \in L_n$ (a boolean procedure)

Input: n > 1 odd, where $n - 1 = t 2^h$ for t odd;

 $a \in \mathbb{Z}_n^*$ (or $a \in \mathbb{Z}_n^+$)

Output: True or false

- $b \leftarrow a^t$ in \mathbb{Z}_n
- if b = 1 then return *true* endif
- for $j \leftarrow 0$ to h-1 do
 - if b = -1 then return *true* endif
 - it b = 1 then return false endif
 - $b \leftarrow b^2$ in \mathbb{Z}_n enddo
- return false

The time complexity is $O(\operatorname{len}(n)^3)$. The algorithm sequentially calculates $a^{n-1} \vee \mathbb{Z}_n$ using the repeated squaring algorithm.

The Miller-Rabin test

Theorem

Let n be an odd number. If n is prime, then $L_n = \mathbb{Z}_n^* = \mathbb{Z}_n^+$. If n > 9 is composite, then $|L_n| \leq \frac{1}{4} |\mathbb{Z}_n^*| < \frac{1}{4} |\mathbb{Z}_n^+|$.

Proof notes:

- For $n = p^e$, $e \ge 2$, where p is an odd prime, is $L_n = K_n$ and since \mathbb{Z}_n^* is cyclic, we can compute $|K_n| = p 1 = \frac{1}{p^{e-1}} |\mathbb{Z}_n^*|$.
- For $n=\prod_{i=1}^r p_i^{e_i}$, $r\geq 2$, p_i odd prime numbers, we can show (it takes some work) that $|L_n|\leq \frac{2}{2^r}|Ker\rho_{t2^g}|\leq \frac{1}{2^{r-1}}|K_n|$, where $\rho_{t2^g}:x\mapsto x^{t2^g}$ and $g=\min\{h,h_1,\ldots,h_r\}$, where $n-1=t2^h$, $\varphi(p_i^{e_i})=t_i2^{h_i}$ and t,t_i are odd.

If *n* is not a Carmichael number, then $|L_n| \leq \frac{1}{2}|K_n| \leq \frac{1}{4}|\mathbb{Z}_n^*|$. If *n* is Carmichael, than $r \geq 3$, so $|L_n| \leq \frac{1}{4}|K_n| = \frac{1}{4}|\mathbb{Z}_n^*|$.

Alena Gollová Primality testing

18/35

The Miller-Rabin test

The Miller-Rabin primality test - algorithm $MR(\cdot, k)$

Input: n > 1 (we test whether n is prime), parameter $k \ge 1$ (number of random witnesses)

Output: True or false

- if n = 2 then return *true* endif
- if *n* is even then return *false* endif
- repeat k times (n is odd for now)
 - $a \stackrel{\not \circ}{\leftarrow} \mathbb{Z}_n^+$ (or $a \stackrel{\not \circ}{\leftarrow} \mathbb{Z}_n^*$)
 - if $a \notin L_n$ then return false endif enddo
- return true

The time complexity is at worst $O(k \operatorname{len}(n)^3)$. The expected time for n composite is $O(\frac{4}{3}\operatorname{len}(n)^3)$.

The Miller-Rabin test

Probability of Error

If *n* is prime, then the Miller-Rabin test always answers *true*.

If *n* is composite, then the probability of error (that $MR(\cdot, k)$ still answers *true*) is at most $\epsilon = \frac{1}{4^k}$.

Note

A random choice of $a \in K_n \setminus L_n$ allows us to factorize n into two factors. The element a generates in its powers a non-trivial square root of 1 ($c \neq \pm 1$, but $c^2 = 1$ in \mathbb{Z}_n), thus $d = \gcd(c \pm 1, n) > 1$ are factors of n.

Alena Gollová Primality testing

21/35

Generating random primes

Analysis of RP algorithm using $MR(\cdot, k)$ - OUTPUT

 $MR(\cdot, k)$ is a probabilistic test with one-sided error, for n composite, the probability of error is at most $\epsilon = \frac{1}{4^k}$. We know from the previous chapter:

- Every prime up to $m = 2^l$ can be found with equal probability.
- The probability that the output is a composite number up to $m \doteq 2^I$ is $O(\epsilon I) = O(\frac{1}{4^K}I)$.

If we want to find a random 1024—bit prime with error probability at most $\frac{1}{2100}$, we should choose k = 55 witnesses.

Generating random primes

RP algorithm (=Random Prime)

Input: a natural number $m \ge 2$, (let's denote l = len(m)), Output: a random prime number between 2 and m

- repeat $n \stackrel{\not \circ}{\leftarrow} \{2, \dots m\}$
- until IsPrime(n)
- output n

 $IsPrime(\cdot)$ will be implemented as the Miller-Rabin test $MR(\cdot, k)$ with parameter k for now.

Alena Gollová Primality testing

22/35

24/35

Generating random primes

Remark

In reality, the probability of error is even smaller, especially when generating large primes. We estimated the number of false witnesses to primality in the Miller-Rabin test by

 $|L_n| \leq \frac{2}{2^r} |K_n| \leq \frac{1}{2^r} |\mathbb{Z}_n^*|$ (for n not Carmichael), where r is the number of primes in the factorization of n. So most of composite numbers has very few false witnesses to primality.

Let's denote by $\gamma(m,k)$ the probability that the output of the algorithm RP(m) using $MR(\cdot,k)$ is a composite number. For large m, $\gamma(m,1)$ (one witness) is already very small.

$$\gamma(2^{200},1) \le \frac{1}{8}, \gamma(2^{300},1) \le \frac{1}{2^{19}}, \gamma(2^{500},1) \le \frac{1}{2^{55}}$$

To generate a 512-bits prime with error probability less than $\frac{1}{2^{100}}$, it is sufficient to choose k=2 witnesses.

Alena Gollová Primality testing 23/35 Alena Gollová Primality testing

Generating random primes

Time analysis of RP algorithm using $MR(\cdot, k)$

Since last time, we know:

- The expected number of loops is O(I), where $I = \operatorname{len}(m)$, since LOOPS has a geometric distribution with parameter $p > \frac{\pi(m)}{m-1} \in O(\frac{1}{I})$ (Chebyshev's theorem). So we will have to test on average I numbers up to $m = 2^I$ before we find one prime number.
- The algorithm $MR(\cdot, k)$ works in time $O(kl^3)$ at worst.
- The expected time is $E(TIME) \in O(kl^4)$.

Alena Gollová Primality testing

25/35

The Miller-Rabin test - improvement

The Miller-Rabin test with division by small primes - $MRS(\cdot, k)$

Most composite numbers are divisible by small primes (every second by two, every third by three, etc.).

To test the divisibility by small primes can take $O(\operatorname{len}(n))$ time, while the Miller-Rabin test takes $O(\operatorname{len}(n)^3)$ time.

We can speed up the primality testing if we first check divisibility by any prime up to a certain bound s.

Generating random primes

Time analysis of RP algorithm using $MR(\cdot, k)$

However, this estimate of time is very pessimistic because if n is composite the probability of finding a witness to compositeness is at least $\frac{3}{4}$. The random variable LOOPS in the Miller-Rabin test has an "almost geometric" distribution, so we can expect $E(LOOPS) = \frac{4}{3}$ choises.

A composite n is usually recognized by one or two Miller-Rabin witnesses, only for a prime n we check k witnesses in order to be more sure. Hence:

• The expected time is $E(TIME) \in O(I^4 + kI^3)$. We test roughly I composite numbers each in time $O(I^3)$ before finding one prime number to test in time $O(kI^3)$.

Alena Gollová Primality testing

26/35

The Miller-Rabin test - improvements

The Miller-Rabin test with division by small primes - algorithm $MRS(\cdot, k)$

```
Input: n > 1 (we test if n is prime), parameter k \ge 1 (number of witnesses to primality) parameter s > 1 (we divide by primes up to the bound s)
```

Output: True or false • for each prime $p \le s$ do

- if $p \mid n$ then if p = n then return *true* else return *false* endif enddo
- repeat *k* times
 - $a \stackrel{\not \sigma}{\leftarrow} \mathbb{Z}_n^+$ (or $a \stackrel{\not \sigma}{\leftarrow} \mathbb{Z}_n^*$)
 - ullet if $a \not\in L_n$ then return false endif enddo
- return true

Alena Gollová Primality testing 27/35 Alena Gollová Primality testing 28/35

Generating random primes

Time analysis of RP algorithm using $MRS(\cdot, k)$

We estimate how many numbers go into the Miller-Rabin test. We know that every p-th number is divisible by the prime p. The probability that a random number n is not divisible by p is then $(1-\frac{1}{p})$. We will assume that beeing not divisible by different primes are independent events (heuristic argument). Let \tilde{p} denote the probability that random n is not divisible by any prime $p \leq s$, then:

$$\widetilde{p} = \prod_{p \leq s} (1 - rac{1}{p}) \in O(rac{1}{\operatorname{len}(s)})$$

Merton's theorem

 $\prod_{p\leq s}(1-\frac{1}{p})\in\Theta(\frac{1}{\ln(s)})$, where the product is over all primes up to s.

Alena Gollová Primality testing

29/35

Generating random primes

Time analysis of RP algorithm using $MRS(\cdot, k)$

• We choose the bound s such that $l \le s \le l^2$, or s = l, then the expected time to find a random prime within 2^l using the $MRS(\cdot, k)$ algorithm is

$$E(TIME) \in O(\frac{1}{\operatorname{len}(I)}I^4 + kI^3)$$

For example, to find a random 1024-bit prime, we will divide by primes up to the bound s=1024. For $k=55<2^6$ we expect time $c(\frac{1}{10}2^{40}+k2^{30}) \doteq c2^{37}$ for a small constant $c \doteq 1$.

Supercomputers operating at a rate of 1000 billions (= 10^{12}) operations per second will find a 1024—bit prime in one second with nearly a zero probability of error. Computers with a speed of one billion operations per second would do it in 15 minutes.

Generating random primes

Time analysis of RP algorithm using $MRS(\cdot, k)$

Thus, we can expect that before we find the prime $\leq m$, we will test roughly I = (m) numbers, of which

- $\frac{1}{\text{len}(s)}$ / numbers will go into the Miller-Rabin test and one or two witnesses will prove their compositeness (in time $O(I^3)$);
- the other composite numbers (there are at most I) will be divisible by some prime up to s, which will be uncovered in time $O(\pi(s) I) = O(\frac{s}{\text{len}(s)} I)$ for each;
- one prime will be tested by all k witnesses in the Miller-Rabin test in time O(kl³);
- The expected time is $E(TIME) \in O(\frac{1}{\operatorname{len}(s)}I^4 + \frac{s}{\operatorname{len}(s)}I^2 + kI^3)$.

Alena Gollová Primality testing

30/35

Eratosthenes sieve

Let's give an algorithm how to find all primes up to the bound s.

Eratosthenes sieve algorithm

```
Input: s > 1
Output: an array A[2, ..., s],
where A[i] = 1 only if i is a prime
• for i \leftarrow 2 to s do A[i] \leftarrow 1 enddo
```

- for $i \leftarrow 2$ to $\lfloor \sqrt{s} \rfloor$ do
 - ullet if A[i]=1 then
 - $j \leftarrow i + i$
 - ullet while $j \leq s$ do $A[j] \leftarrow 0$, $j \leftarrow j + i$ enddo
 - endif
 - enddo

Eratosthenes sieve

Analysis of the Eratosthenes sieve algorithm

The space complexity is exponential $O(s) = O(2^{\{len(s)\}})!$

We estimate the time complexity:

For each prime $p \leq \sqrt{s}$ we perform $\frac{s}{p}$ simple operations.

$$TIME = \sum_{p \leq \sqrt{s}} \frac{s}{p} < s \int_1^{\sqrt{s}} \frac{1}{y} dy = \frac{1}{2} s \ln(s) \in O(s \operatorname{len}(s))$$

A more accurate estimate: $TIME \in O(s \operatorname{len}(\operatorname{len}(s)))$, thanks to the following theorem.

Theorem

Sum over all primes $\sum_{p \leq \sqrt{s}} \frac{1}{p} = \ln(\ln(s)) + O(1)$.

Alena Gollová Primality testing

33/35

35/35

Primality testing

Literature

 Shoup: A Computational Introduction to Number Theory and Algebra. Chapter 10. http://shoup.net/ntb/

Alena Gollová Primality testing

The Miller-Rabin test

Note

If the generalized Riemann hypothesis holds, then for every composite number n there is a witness to compositeness, $a \in \mathbb{Z}_n \setminus L_n$, of size $a \leq 2 \operatorname{len}(n)^2$.

If this is the case, the Miller-Rabin test could be deterministic and it would work in time $O(len(n)^5)$.

The RP algorithm would then find a prime up to $m=2^l$ in time $O(\frac{1}{\ln(l)}I^6)$ (when dividing by primes up to the bound s = l).

Alena Gollová Primality testing

34/35