Written exam in cryptography

Name and surname:

Exercise	1	2	3	4	Σ
Points					

Instructions

- Write on white A4 sheets of paper and do not use ordinary pencil or red pen.
- Start writing each exercise on a new page and mark the beginning of each subtask.
- Calculators are allowed for addition, multiplication and exponentiation modulo n (unless otherwise required). Other calculations must be worked out step by step. Penalty: 50%.
- Give proper reasons for your statements. Write comments on the calculations. Penalty: 50%.

Exercises

- 1. [25 POINTS] RSA protocol, attacks on RSA, prime factorization problem
 - (a) [10 POINTS] Alice has the RSA public key (n, e) = (589, 23). Decide whether any of the following keys (n, d) is Alice's private key: (589, 45), (589, 47), (589, 49). Alice received a message b = 10, decrypt this message.
 - (b) [10 POINTS] The public and private key-pair is known for the RSA protocol: (n, e) = (7811, 17), (n, d) = (7811, 449). Use the insider attack to factorize the module n = 7811. (Note: This is not brute force factoring, but factoring based on knowledge of a multiple of $\varphi(n)$!)
 - (c) [5 POINTS] Prove that knowing $\varphi(n)$ allows to factorize the module n of the RSA protocol.
- 2. [25 POINTS] Diffie-Hellman key establishment, ElGamal protocol, discrete logarithm problem
 - (a) [5 POINTS] Verify that the element a = 124 is a generator of the cyclic group \mathbb{Z}_{131}^* .
 - (b) [10 POINTS] Use the Baby step/giant step algorithm to compute $dlog_{124}(90)$ in \mathbb{Z}_{131}^* .
 - (c) [10 POINTS] The ElGamal encryption protocol uses the cyclic group \mathbb{Z}_{131}^* with the generator a = 124. Alice's public key is e = 90. Alice received a message $(c, \bar{m}) = (73, 103)$, decrypt this message.
- 3. [25 POINTS] Primality tests, generating random primes
 - (a) [5 POINTS] Use the Fermat test to check if n = 377 is prime. Choose two witnesses: a = 12, b = 52.
 - (b) [5 POINTS] In which case can be an element, which proves in the Fermat test that n is not prime, used for factoring n? Use calculations from the previous subtask to factorize n = 377.
 - (c) [10 POINTS] Find the set of all false Fermat witnesses for primality of n = 377.
 - (d) [5 POINTS] Does the witness a = 12 reveal the compositeness of n = 377 if we use the Miller-Rabin test?
- 4. [25 POINTS] Subexponential algorithms for discrete logarithm or for factoring integers
 - (a) [5 POINTS] In the group \mathbb{Z}_{19}^* , we know the representation (s,t) = (6,8) of the element 1 with respect to the generator a = 2 and the element b = 7. Calculate $dlog_2(7)$ in \mathbb{Z}_{19}^* .
 - (b) [15 POINTS] $G = \langle 16 \rangle$ is a cyclic subgroup of order q = 37 in the group \mathbb{Z}_{149}^* . Use the algorithm SEDL to compute dlog₁₆(36) in G, choose the smoothness parameter y = 3.
 - (c) [5 POINTS] Let $G = \langle a \rangle$ be a subgroup of order q in the group \mathbb{Z}_p^* , where p is a prime. Prove that $\operatorname{dlog}_a(b)$ is defined if and only if $b^q = 1$ in \mathbb{Z}_p^* .