Midterm test A

- The time limit is 50 minutes
- Do not forget to clearly write the answer to every question.
- All your computations and derivations should be clear or properly explained

1. (5 b.) Consider the following formula of predicate logic. Construct its negation and reformulate it in such a way that the sign \neg appears only in front of the "atomic" formulas only.

$$
(\forall x \forall y(Q(x, y) \Rightarrow P(x))) \wedge(R(a) \Rightarrow(\forall x(P(x) \Rightarrow R(x))))
$$

2. (5 b.) An operation \bullet on \mathbb{R} is given by

$$
x \bullet y=\sqrt[3]{x^{3}+y^{3}} .
$$

Decide, whether (\mathbb{R}, \bullet) forms a group.
3. (5 b.) Decide, whether [129] is invertible in $\left(\mathbb{Z}_{301}, \cdot\right)$.
4. (5 b.) Find all $x \in \mathbb{Z}$ that satisfy $7^{50} \equiv 33 x+1(\bmod 45)$

Midterm test B

- The time limit is 50 minutes
- Do not forget to clearly write the answer to every question.
- All your computations and derivations should be clear or properly explained

1. (5 b.) Consider the following formula of predicate logic. Construct its negation and reformulate it in such a way that the sign \neg appears only in front of the "atomic" formulas only.

$$
(\exists x \exists y(Q(x, y) \Rightarrow P(x))) \vee(R(a) \Rightarrow(\forall x(P(x) \Rightarrow R(x))))
$$

2. (5 b.) An operation \bullet on \mathbb{R} is given by

$$
x \bullet y=\sqrt[5]{x^{5}+y^{5}} .
$$

Decide, whether (\mathbb{R}, \bullet) forms a group.
3. (5 b.) Decide, whether [91] is invertible in $\left(\mathbb{Z}_{299}, \cdot\right)$.
4. (5 b.) Find all $x \in \mathbb{Z}$ that satisfy $7^{42} \equiv 18 x+3(\bmod 44)$

