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Chapter 4

Integers

4.1 Integers and Their Properties

Integers are well known numbers. They play a crucial role in mathematics, primarily in the
discrete mathematics and its applications. We will use them in the sequel to introduce ”new
numbers”, the residual classes of integers modulo a positive integer n.

First, let us recall some well known facts about division of integers. They are: integer
division with remainder, a common divisor, and the greatest common divisor. We present
the Euclid’s Algorithm for finding the greatest common divisor and its applications, namely
for solving Diophantic equations — equations in which only integer solutions are sought.

4.1.1 The Division Theorem. Let a,b, b > 0, be two integers. Then there exist unique
integers g, r such that
a=qb+r, 0<r<hb
O
We will prove later only the uniqueness part of the theorem, the existence of ¢ and r
follows from the well known way how to divide two integers.

4.1.2 Remark. 1. The number ¢ is called the quotient, and r the remainder when we
divide a by b.

2. We formulated the division theorem not only for natural numbers a and b, but
also for a negative integer a. In that case, we have to be a little more careful. Assume that
a is negative. Divide the absolute value |a| by b. Then |a| = ¢’b+ 1" for 0 <+’ < b, ¢’ <0,
and a = —¢'b—7r'. If ' = 0 then a = —¢'b, and we have ¢ = —¢’, r = 0. Assume 0 < 1’/ < b,
then a = —¢'b—r' = —(¢' + 1)b+ (b —r’). Moreover, 0 < b—r' < b, and hence ¢ = —(¢' + 1)
and r =b—1'.

We show the procedure on the following example: Let a = —7, b = 3. We have 7 = 2-3+1,
hence —7=—-2-3—-1=—3-3+ (3 —1). Therefore, g = —3 and r = 2.

Let us prove the uniqueness of the quotient and the remainder.

4.1.3 Justification of Uniqueness. Assume that there exist two pairs ¢ and r from
say q1, 1 and go, 73, where 0 < r1,7r9 < b. We have

a=qb+r, and a =qgo b+ ro.
Then
@b+ri=qb+ry, ie (g1 —q)b=r2—711.

Because |ra —r1| < b and it is a multiple of b, the number g; — g2 must be 0 (indeed, otherwise
[(g1 —q2)b| > b) . And this means that ¢g; = g2 and r1 = ro. We have shown that the quotient
and the remainder are unique. O

August 20, 2017, 15:29



26 [170820-1529] Chapter 4. Integers

4.1.4 Divisibility. Let us recall other well known notions.

Definition. Given two integers a,b. We say that b divides a if a = kb for some integer k.
We also say that a is a multiple of b. This fact is denoted by b|a.

A positive integer p, p > 1, is said to be a prime if it satisfies:
a|p, a>0, implies a=1 ora=p.

A number n > 1 is composite if it is not a prime, or equivalently, if there exist r, s € Z such
that n=7r-sand r > 1 and s > 1. (]

Notice, that 0 divides 0; indeed, e.g. 0 = 1-0. If b # 0 then b | ¢ if and only if the remainder
when dividing a by b equals 0. Also, note that 1 has a special role, it is (by definition) neither
a composite number nor a prime.

4.1.5 A Common Divisor and the Greatest Common Divisor. Let us recall the
definition of a common divisor and the greatest common divisor.

Definition. Let a and b be two integers. A common divisor of a and b is any integer e for
which e|a and e|b.

The greatest common divisor of a, b is the integer ¢ such that

1.¢>0
2. ¢ is a common divisor of a and b, i.e. ¢|a and c|b,
3. and if e is any common divisor of @ and b then e]c.

The greatest common divisor of @ and b is denoted by ged(a,b). Integers a and b are called
relatively prime (or coprime) if ged(a,b) = 1. O

4.1.6 Remarks.

1. For every natural number a we have a = ged(a, 0).

2. If for natural numbers a, b we have a|b then ged(a,b) = a.

3. For every integers a, b it holds that ged(a,b) is always non-negative and ged(a,b) =
ged(—a,b) = ged(a, —b) = ged(—a, —D).

4.1.7  You know from school mathematics that the greatest common divisor of ¢ and b
can be found using a factorization of a and b into products of primes. Unfortunately, finding
such factorization for big a (or b) is a very difficult task. (There is not known a tractable
algorithm for finding it.) The following fast algorithm, due to Euclid, is based on the division
theorem.

4.1.8 Euclid’s Algorithm.

Input: Positive natural numbers a and b
Output: ¢ = ged(a,d).

1. (Initialization.)
u:=a,t:=0b

2. (Divide u by t.)
repeat
dou=gq-t+r;
u:=t,t:=r.
until ¢t = 0.
3. (The greatest common divisor)
return c := u.
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4.1.9 Correctness of the Euclid’s Algorithm. Notice that the above algorithm will
always terminate; indeed, the number ¢ in the next execution of the step 2 is an integer that
is always strictly smaller than the previous one. So after a finite number of executions of step
2, we get t = 0 and the algorithm terminates.

The fact that the algorithm returns ged(a,b) is proved in the following proposition.

Proposition. The pairs of numbers u,t and ¢, from the Euclid’s algorithm have the
same common divisors. Hence ged(u,t) = ged(t, ) = ged(a, b). O
Justification. Since r = u — ¢ - t for an integer ¢, any common divisor of u and t is also a
divisor of ¢,r. Indeed, if u =d-u and t =d-t', then alsor =d-uv —q-d-t' =d(u — qt’).
On the other hand, u = ¢ -t 4+ r so any common divisor of ¢,r is a divisor of u as well.
Indeed, if t =d-¢ and r =d v/, then alsou=gq-d-t' +d -7 =d(gt' +1'). O

4.1.10  Euclid’s Algorithm can be extended in such a way that it finds not only ged(a, b)
but also integers x,y that solve the following equation

ax+ by = ged(a,b).

Such equations (considered as equations over integers) will play a crucial role when investi-
gating properties of residual classes modulo n.

4.1.11 Bezout’s Theorem. Let a and b be two natural numbers. Denote ¢ = ged(a, b).
Then there exist integers z,y such that

ar+by=c.

O

The proof of the Bezout’s theorem will be given by the extended Euclid’s algorithm,

because the extended Euclid’s algorithm not only proves the existence of integers x and y,
but it finds them together with the greatest common divisor of a and b.

4.1.12 Extended Euclid’s Algorithm.
Input: natural numbers a and b.

Output: ¢ = ged(a,b) together with z,y € Z for which az + by = c.

1. (Initialization.)
Ui=a, Ty =1, Yy :=0,t:=0, x4 := 0, y := 1;
2. (Division.)
repeat
dou=gq-t+7r, Tr =Ty —qT¢, Yr = Yu — qYt;
Ui=1, Ty 1= Tt, Yy ‘= Yt
ti=7r, Tt =Ty, Yt = Yp.
until t =10
3. (Greatest common divisor and z, y)
return ¢ :=uU, T := Ty, Y := Yu-

Justification of the above algorithm is similar to [£.1.8]
l.a=1-a4+0-band b=0-a+ 1-b. So, the step 1 correctly sets x,,y, and ¢, y;.
2. Assume that u = ax, + by, and t = ax¢ + by;. Then
r=u—qt=ar,+by,—qlars +by) = a(ry —qr) +b(Yu — qYt)-
Hence, it is clear that the numbers x, and vy, are correctly defined.

O
The Bezout’s theorem has couple of important corollaries; some of them you have used in
school mathematics without justification.
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4.1.13 Corollary.

1. Let a and b be two relatively prime numbers. If a divides a product b - ¢ then a divides
c.
2. If a prime number p divides a product a - b then it divides at least one of the numbers
a,b.
O

Justification. We prove the first part of the corollary; the second one is an easy consequence
of the first one.
Assume that numbers a and b are relatively prime. By the Bezout’s theorem there exist
integers x,y such that
l=azxz+by.

Multiplying the equation by ¢ we get
c=acz+bey.

Number a divides a c and it also divides the product b ¢, hence a divides c. ([

4.1.14 Prime Factorization. Let us recall another known fact — a factorization of a
natural number different from 1 into a product of primes.

Theorem. Every natural number n, n > 1, factors into a product of primes, i.e.

n=pl'-py ... D,
where p1, ..., px are distinct primes, and i1, ...,%; positive natural numbers.
If moreover p; < ps < ... < pg then the factorization is unique. (I

Justification. The existence of a prime factorization is shown using mathematical induction
(more precisely, the principle of strong mathematical induction).

To justify the uniqueness one can use the above corollary. Assume that
plll .p222 .....ka :qil _q%2__”_q%n,
and p1 < p2 < ... < pPp, q1 < @2 < ... < @ then p; divides q{l -q%2 Ceoqimso pr = qr.
(Indeed, a prime number p divides a prime number ¢ then p = ¢q. Hence, p; must be equal to
the smallest prime among ¢; and it is ¢;.)
If we divide the equality by p; and repeat the argument we get that i; = j;. Analogously
(after dividing by pi') we get pa = ¢, 12 = ja, etc. k =m and py, = qi, ix = Jji. O

4.1.15 There is a Countably Many Primes. Using the prime factorization theorem
one can easily prove that there is an infinite number of primes — see the following theorem.
Since every prime is an integer, it means that there is countably many of them.

Theorem. There are infinitely (countably) many primes. (]

Justification. Assume that there were only finitely many primes, say p1,po,...,pn were the
only primes. Then the number n = p; - ps - ... - py + 1 is a product of primes; namely is
divisible by some prime p. But p cannot be among p1,...,pn, since n is not divisible by any
p; — a contradiction. O

4.1.16 Diophantic Equations. The Bezout’s theorem4.1.11|helps us to solve other linear
equations where we are looking for integer solutions — so called Diophantic equations.

Definition. Given three integers a, b, c. Find all integers x,y € Z which are solutions of the
following equation
ar + by = c. (4.1)

O
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4.1.17 When a Diophantic Equation Has Got a Solution. The following proposition
characterizes all Diophantic equations that have got at least one solution.

Proposition. Equation [4.1] has got at least one solution if and only if ¢ is divisible by the
greatest common divisor of a and b. O

Justification. Denote d = ged(a, b). If ¢ is a multiple of d, say ¢ = k d, then it suffices to find
integers z’,y’ from the Bezout’s Theorem for which

d=az'+by and c=kd=aka' +bky.

Now z := kx’ and y := ky’ is one solution of the equation 4.1
Assume that there exist integers x, y such that

c=azx+by.

Then every common divisor of a,b divides ¢ as well. Hence the greatest common divisor is
one of them and ged(a,b) divides c. O

4.1.18 Homogeneous Diophantic Equations. A Diophantic equation is said to be

homogeneous if the right hand side is 0, i.e. ¢ = 0 in A homogeneous Diophantic

equation always has got countably many solutions, see the following proposition.

Proposition. If a # 0 # b then the equation ax + by = 0 has always got infinitely many

solutions, more precisely, * = —k - b1, y = k- a1 for any k € Z, where a; = m and

b = % are all integer solutions of it. (I
ged(a,b)

Justification. Divide the equation ax + by = 0 by ged(a,b). We get a1z + byy = 0 for
a; = m and by = W‘ab). Moreover, a; and by are relatively prime.
From ayx = —b;y we get that a; divides y, see the corollary |4.1.13] Hence there is k € Z
for which y = ka;. Substituting it to the equation we get

ayx = —by(ka;) and x = —kb;.

O

4.1.19 Equations [4.1] are linear equations with two variables. Analogously as in linear
algebra it is easy to see that a general solution of ax + by = ¢ is a sum of one solution of
ax + by = c plus a general solution of the corresponding homogeneous equation ax + by = 0.
Hence, we get the following proposition.

Proposition. If ¢ is a multiple of gcd(a,b) then any solution of is of the form
z=zo+k-bi, y=yo—k-a,

where xq, 1o is a solution of the equation a = gcd‘(la ok b1 = gcdfa D) and k € Z. O

4.1.20 A Procedure How to Solve Diophantic Equations. We can summarize the
above propositions to the following instructions how to solve equations |4.1

1. Using the extended Euclid’s algorithm we find integers z¢ and yo satisfying [£.1] or find
out that the equation does not have a solution.

2. If there is at least one integer solution of [£.I] we find a general integer solution of the
equation ax + by = 0 as follows.

First, we divide the equation by ged(a, b) and obtain an equation a; « + by y = 0 where
a1 and by are relatively prime. The general solution is now = = b1 k, y = —ay k where
keZ.

3. The general solution of [£.1] is
r=x90+b0i k, y=y—ark, keZ.

The correctness of the above method follows from the proposition above.
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