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Chapter 4

Integers

4.1 Integers and Their Properties

Integers are well known numbers. They play a crucial role in mathematics, primarily in the
discrete mathematics and its applications. We will use them in the sequel to introduce ”new
numbers”, the residual classes of integers modulo a positive integer n.

First, let us recall some well known facts about division of integers. They are: integer
division with remainder, a common divisor, and the greatest common divisor. We present
the Euclid’s Algorithm for finding the greatest common divisor and its applications, namely
for solving Diophantic equations — equations in which only integer solutions are sought.

4.1.1 The Division Theorem. Let a, b, b > 0, be two integers. Then there exist unique
integers q, r such that

a = q b + r, 0 ≤ r < b.

�
We will prove later only the uniqueness part of the theorem, the existence of q and r

follows from the well known way how to divide two integers.

4.1.2 Remark. 1. The number q is called the quotient , and r the remainder when we
divide a by b.

2. We formulated the division theorem 4.1.1 not only for natural numbers a and b, but
also for a negative integer a. In that case, we have to be a little more careful. Assume that
a is negative. Divide the absolute value |a| by b. Then |a| = q′b + r′ for 0 ≤ r′ < b, q′ ≤ 0,
and a = −q′b− r′. If r′ = 0 then a = −q′b, and we have q = −q′, r = 0. Assume 0 < r′ < b,
then a = −q′b− r′ = −(q′ + 1)b+ (b− r′). Moreover, 0 < b− r′ < b, and hence q = −(q′ + 1)
and r = b− r′.

We show the procedure on the following example: Let a = −7, b = 3. We have 7 = 2·3+1,
hence −7 = −2 · 3− 1 = −3 · 3 + (3− 1). Therefore, q = −3 and r = 2.

Let us prove the uniqueness of the quotient and the remainder.

4.1.3 Justification of Uniqueness. Assume that there exist two pairs q and r from 4.1.1,
say q1, r1 and q2, r2, where 0 ≤ r1, r2 < b. We have

a = q1 b + r1, and a = q2 b + r2.

Then
q1 b + r1 = q2 b + r2, i.e. (q1 − q2) b = r2 − r1.

Because |r2−r1| < b and it is a multiple of b, the number q1−q2 must be 0 (indeed, otherwise
|(q1−q2)b| ≥ b) . And this means that q1 = q2 and r1 = r2. We have shown that the quotient
and the remainder are unique. �
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4.1.4 Divisibility. Let us recall other well known notions.

Definition. Given two integers a, b. We say that b divides a if a = k b for some integer k.
We also say that a is a multiple of b. This fact is denoted by b | a.

A positive integer p, p > 1, is said to be a prime if it satisfies:

a | p, a ≥ 0, implies a = 1 or a = p.

A number n > 1 is composite if it is not a prime, or equivalently, if there exist r, s ∈ Z such
that n = r · s and r > 1 and s > 1. �

Notice, that 0 divides 0; indeed, e.g. 0 = 1·0. If b 6= 0 then b | a if and only if the remainder
when dividing a by b equals 0. Also, note that 1 has a special role, it is (by definition) neither
a composite number nor a prime.

4.1.5 A Common Divisor and the Greatest Common Divisor. Let us recall the
definition of a common divisor and the greatest common divisor.

Definition. Let a and b be two integers. A common divisor of a and b is any integer e for
which e | a and e | b.

The greatest common divisor of a, b is the integer c such that

1. c ≥ 0
2. c is a common divisor of a and b, i.e. c | a and c | b,
3. and if e is any common divisor of a and b then e | c.

The greatest common divisor of a and b is denoted by gcd(a, b). Integers a and b are called
relatively prime (or coprime) if gcd(a, b) = 1. �

4.1.6 Remarks.

1. For every natural number a we have a = gcd(a, 0).
2. If for natural numbers a, b we have a | b then gcd(a, b) = a.
3. For every integers a, b it holds that gcd(a, b) is always non-negative and gcd(a, b) =

gcd(−a, b) = gcd(a,−b) = gcd(−a,−b).

4.1.7 You know from school mathematics that the greatest common divisor of a and b
can be found using a factorization of a and b into products of primes. Unfortunately, finding
such factorization for big a (or b) is a very difficult task. (There is not known a tractable
algorithm for finding it.) The following fast algorithm, due to Euclid, is based on the division
theorem.

4.1.8 Euclid’s Algorithm.

Input: Positive natural numbers a and b
Output: c = gcd(a, b).

1. (Initialization.)
u := a, t := b;

2. (Divide u by t.)
repeat

do u = q · t + r;
u := t, t := r.

until t = 0.
3. (The greatest common divisor)

return c := u.
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4.1.9 Correctness of the Euclid’s Algorithm. Notice that the above algorithm will
always terminate; indeed, the number t in the next execution of the step 2 is an integer that
is always strictly smaller than the previous one. So after a finite number of executions of step
2, we get t = 0 and the algorithm terminates.

The fact that the algorithm returns gcd(a, b) is proved in the following proposition.

Proposition. The pairs of numbers u, t and t, r from the Euclid’s algorithm 4.1.8 have the
same common divisors. Hence gcd(u, t) = gcd(t, r) = gcd(a, b). �

Justification. Since r = u − q · t for an integer q, any common divisor of u and t is also a
divisor of t, r. Indeed, if u = d · u′ and t = d · t′, then also r = d · u′ − q · d · t′ = d(u′ − qt′).

On the other hand, u = q · t + r so any common divisor of t, r is a divisor of u as well.
Indeed, if t = d · t′ and r = d · r′, then also u = q · d · t′ + d · r′ = d(qt′ + r′). �

4.1.10 Euclid’s Algorithm can be extended in such a way that it finds not only gcd(a, b)
but also integers x, y that solve the following equation

a x + b y = gcd(a, b).

Such equations (considered as equations over integers) will play a crucial role when investi-
gating properties of residual classes modulo n.

4.1.11 Bezout’s Theorem. Let a and b be two natural numbers. Denote c = gcd(a, b).
Then there exist integers x, y such that

a x + b y = c.

�
The proof of the Bezout’s theorem will be given by the extended Euclid’s algorithm,

because the extended Euclid’s algorithm not only proves the existence of integers x and y,
but it finds them together with the greatest common divisor of a and b.

4.1.12 Extended Euclid’s Algorithm.

Input: natural numbers a and b.

Output: c = gcd(a, b) together with x, y ∈ Z for which a x + b y = c.

1. (Initialization.)
u := a, xu := 1, yu := 0, t := b, xt := 0, yt := 1;

2. (Division.)
repeat

do u = q · t + r, xr := xu − q xt, yr := yu − q yt;
u := t, xu := xt, yu := yt
t := r, xt := xr, yt := yr.

until t = 0
3. (Greatest common divisor and x, y)

return c := u, x := xu, y := yu.

Justification of the above algorithm is similar to 4.1.8.

1. a = 1 · a + 0 · b and b = 0 · a + 1 · b. So, the step 1 correctly sets xu, yu and xt, yt.
2. Assume that u = a xu + b yu and t = a xt + b yt. Then

r = u− q t = a xu + b yu − q (a xt + b yt) = a (xu − q xt) + b (yu − q yt).

Hence, it is clear that the numbers xr and yr are correctly defined.

�
The Bezout’s theorem has couple of important corollaries; some of them you have used in

school mathematics without justification.
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4.1.13 Corollary.

1. Let a and b be two relatively prime numbers. If a divides a product b · c then a divides
c.

2. If a prime number p divides a product a · b then it divides at least one of the numbers
a, b.

�

Justification. We prove the first part of the corollary; the second one is an easy consequence
of the first one.

Assume that numbers a and b are relatively prime. By the Bezout’s theorem there exist
integers x, y such that

1 = a x + b y.

Multiplying the equation by c we get

c = a c x + b c y.

Number a divides a c and it also divides the product b c, hence a divides c. �

4.1.14 Prime Factorization. Let us recall another known fact – a factorization of a
natural number different from 1 into a product of primes.

Theorem. Every natural number n, n > 1, factors into a product of primes, i.e.

n = pi11 · p
i2
2 · . . . · p

ik
k ,

where p1, . . . , pk are distinct primes, and i1, . . . , ik positive natural numbers.

If moreover p1 < p2 < . . . < pk then the factorization is unique. �

Justification. The existence of a prime factorization is shown using mathematical induction
(more precisely, the principle of strong mathematical induction).

To justify the uniqueness one can use the above corollary. Assume that

pi11 · p
i2
2 · . . . · p

ik
k = qj11 · q

j2
2 · . . . · qjmm

and p1 < p2 < . . . < pk, q1 < q2 < . . . < qm then p1 divides qj11 · q
j2
2 · . . . · qjmm so p1 = q1.

(Indeed, a prime number p divides a prime number q then p = q. Hence, p1 must be equal to
the smallest prime among qj and it is q1.)

If we divide the equality by p1 and repeat the argument we get that i1 = j1. Analogously
(after dividing by pi11 ) we get p2 = q2, i2 = j2, etc. k = m and pk = qk, ik = jk. �

4.1.15 There is a Countably Many Primes. Using the prime factorization theorem
one can easily prove that there is an infinite number of primes – see the following theorem.
Since every prime is an integer, it means that there is countably many of them.

Theorem. There are infinitely (countably) many primes. �

Justification. Assume that there were only finitely many primes, say p1, p2, . . . , pN were the
only primes. Then the number n = p1 · p2 · . . . · pN + 1 is a product of primes; namely is
divisible by some prime p. But p cannot be among p1, . . . , pN , since n is not divisible by any
pi – a contradiction. �

4.1.16 Diophantic Equations. The Bezout’s theorem 4.1.11 helps us to solve other linear
equations where we are looking for integer solutions – so called Diophantic equations.

Definition. Given three integers a, b, c. Find all integers x, y ∈ Z which are solutions of the
following equation

ax + by = c. (4.1)

�
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4.1.17 When a Diophantic Equation Has Got a Solution. The following proposition
characterizes all Diophantic equations that have got at least one solution.

Proposition. Equation 4.1 has got at least one solution if and only if c is divisible by the
greatest common divisor of a and b. �

Justification. Denote d = gcd(a, b). If c is a multiple of d, say c = k d, then it suffices to find
integers x′, y′ from the Bezout’s Theorem for which

d = a x′ + b y′ and c = k d = a k x′ + b k y′.

Now x := k x′ and y := k y′ is one solution of the equation 4.1.

Assume that there exist integers x, y such that

c = a x + b y.

Then every common divisor of a, b divides c as well. Hence the greatest common divisor is
one of them and gcd(a, b) divides c. �

4.1.18 Homogeneous Diophantic Equations. A Diophantic equation is said to be
homogeneous if the right hand side is 0, i.e. c = 0 in 4.1. A homogeneous Diophantic
equation always has got countably many solutions, see the following proposition.

Proposition. If a 6= 0 6= b then the equation ax + by = 0 has always got infinitely many
solutions, more precisely, x = −k · b1, y = k · a1 for any k ∈ Z, where a1 = a

gcd(a,b) and

b1 = b
gcd(a,b) are all integer solutions of it. �

Justification. Divide the equation ax + by = 0 by gcd(a, b). We get a1x + b1y = 0 for
a1 = a

gcd(a,b) and b1 = b
gcd(a,b) . Moreover, a1 and b1 are relatively prime.

From a1x = −b1y we get that a1 divides y, see the corollary 4.1.13. Hence there is k ∈ Z
for which y = ka1. Substituting it to the equation we get

a1x = −b1(ka1) and x = −kb1.

�

4.1.19 Equations 4.1 are linear equations with two variables. Analogously as in linear
algebra it is easy to see that a general solution of ax + by = c is a sum of one solution of
ax + by = c plus a general solution of the corresponding homogeneous equation ax + by = 0.
Hence, we get the following proposition.

Proposition. If c is a multiple of gcd(a, b) then any solution of 4.1 is of the form

x = x0 + k · b1, y = y0 − k · a1,

where x0, y0 is a solution of the equation 4.1, a1 = a
gcd(a,b) , b1 = b

gcd(a,b) and k ∈ Z. �

4.1.20 A Procedure How to Solve Diophantic Equations. We can summarize the
above propositions to the following instructions how to solve equations 4.1.

1. Using the extended Euclid’s algorithm we find integers x0 and y0 satisfying 4.1 or find
out that the equation does not have a solution.

2. If there is at least one integer solution of 4.1 we find a general integer solution of the
equation a x + b y = 0 as follows.

First, we divide the equation by gcd(a, b) and obtain an equation a1 x+ b1 y = 0 where
a1 and b1 are relatively prime. The general solution is now x = b1 k, y = −a1 k where
k ∈ Z.

3. The general solution of 4.1 is

x = x0 + b1 k, y = y0 − a1 k, k ∈ Z.

The correctness of the above method follows from the proposition above.
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