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Chapter 8

Combinatorics

In this lecture we will focus on so called enumerative combinatorics, it means a way how to
count the number of certain objects. At first, we introduce two main principles that will help
us to solve more complicated tasks.

8.1 Multiplication and Addition Principles

8.1.1 Multiplication Principle. Assume that a certain activity can be divided into k
independent consecutive steps. If step 1 can be done in n1 ways, step 2 can be done in n2

ways, etc., and step k can be done in nk ways, then the number of distinct ways the activity
can be done is

n1 · n2 · . . . · nk.

�

8.1.2 Example. How many distinct binary words of length n there are?

Solution. A binary word of length n is any sequence a1 a2 . . . an where for all i we have
ai ∈ {0, 1}. Such n-tuples can be formed as follow: we choose a1, then a2, etc, an. For each
ai there are 2 possibilities, indeed, either 0 or 1. So there are 2 ·2 · . . . ·2 = 2n different binary
words. �

8.1.3 Addition Principle. Assume that we have n sets A1, A2, . . . , An pairwise disjoint
(which means that for i 6= j it is Ai ∩ Aj = ∅). Further, assume that each set Ai has ki
elements. The number of elements that can be chosen from A1 or A2 or . . . or An is

k1 + k2 + . . . + kn.

Notice that it is the same as the number of elements the set A1 ∪A2 ∪ . . . ∪An has. �

8.1.4 Example. How many ways can we select two different kinds chocolate bars if we
have 4 different dark bars, 5 different milk bars, and 3 different white bars?

Solution. Using the multiplication principle, we know that there are 4 · 5 different choices of
one dark and one milk bar, 4 · 3 different choices of one dark and one white bar, and 5 · 3
different choices of one milk and one white bar. These choices are pairwise disjoint, so the
number of different choices is

20 + 12 + 15 = 47.

�
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8.2 Permutations, Combinations, Variations

8.2.1 Permutations. To permute objects means to change order of the given objects.

Definition. Given n distinct elements a1, a2, . . . , an. A permutation of a1, a2, . . . , an is any
ordering of elements a1, a2, . . . , an. �

Recall that a permutation of a1, a2, . . . , an can be viewed as a bijective (i.e. one-to-one
and onto) mapping from {1, 2, . . . , n} to {a1, a2, . . . , an}.

Proposition. The number of different permutations of elements a1, a2, . . . , an equals to
n · (n− 1) · . . . · 2 · 1. �

Justification. We use the multiplication principle. For the first element we have n possibilities,
indeed, any element a1, a2, . . . , an. For the second element we can now choose one of n − 1
different elements (not to the one which was chosen as the first one). For the third element
we have n− 2 possibilities, etc. Hence, all together there are

n · (n− 1) · (n− 2) · . . . · 2 · 1

distinct permutations. �

8.2.2 Factorial. For n ≥ 1 the number

n · (n− 1) · . . . · 2 · 1

is called n factorial and denoted by n!.

For n = 0 we define 0! = 1.

8.2.3 Example. In a shop there are 6 types of chocolate. How many different ways these
6 types could be exhibited in a row?

Solution. Any permutation of t1, . . . , tn (where ti represents the i-th type) describes one such
exhibition. Hence, there are

6! = 6 · 5 · . . . · 2 · 1 = 720

different ways.

8.2.4 Example. How many permutations of letters A,B,C,D,E, F contains CDE as a
substring?

Solution. Since the letters CDE must be consecutive and in this order, we can assume that
CDE is a new symbol, say Y . Then the question is: how many permutations of A,B, F, Y .
There are

4 · 3 · 2 · 1 = 24

such permutations. �

8.2.5 Variations.

Definition. A k-variation of n distinct elements a1, a2, . . . , an is a sequence of k (distinct)
elements of the set {a1, a2, . . . , an}. The number of distinct k-variations is denoted by P (n, k).

�

Remark. k-variations are also called k-permutations.

Proposition. The number of k-variations of a set of n distinct elements (k ≤ n), is

P (n, k) = n · (n− 1) · . . . · (n− k + 1) =
n!

(n− k)!
.

�
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Justification. The proof is similar to the proof of the number of permutations. Indeed, for
the first element we have n distinct possibilities, for the second element we have n−1 distinct
possibilities, etc., . . . , for the k-th element we have n− k + 1 distinct possibilities. Now, the
multiplication principle finishes the argument. �

Example. A password for a credit card contains four distinct digits.

• How many passwords can be formed?
• How many passwords that do not start with 0 can be formed?

Solution.

1) These are 4-variations of ten digits 0, 1, . . . , 9. Hence, the number of distinct passwords
is

10 · 9 · 8 · 7 = 5040.

2) By the multiplication principle, the number of passwords is

9 · (9 · 8 · 7) = 4536.

Indeed, for the first digit we have nine possibilities (digits 1, . . . , 9), and this digit is followed
by 3-variation of the remaining digits and 0.

8.2.6 Combinations.

Definition. Given a finite set A = {a1, a2, . . . , an} of n distinct elements. An k-combination
of A is an unordered selection of k elements of A (in other words, an k element subset of A).
The number of distinct k-combinations of n element set is denoted by C(n, k). �

8.2.7 Proposition. The number of distinct k-combinations of n element set equals

C(n, k) =

(
n

k

)
=

n!

(n− k)! k!
.

�
Justification. There are P (n, k) distinct k-variations of n distinct elements. k-variations that
differ only by ordering correspond to the same k-combination. Since there are k! permutations
of a k element set, we get

C(n, k) =
P (n, k)

k!
=

n · . . . · (n− k + 1)

k!
=

n!

(n− k)! k!
.

�

8.2.8 Binomial Coefficients. Let k ≤ n be two natural numbers. Then the number(
n

k

)
=

n!

k! (n− k)!

is called a binomial coefficient (or a combinatorial number).

8.2.9 Proposition.

1) For all n ∈ N we have
(
n
0

)
= 1

2) For all n ∈ N we have
(
n
1

)
= n.

3) For all k ≤ n, k, n ∈ N, we have (
n

k

)
=

(
n

n− k

)
.
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4) For all k ≤ n, k, n ∈ N, it holds that(
n

k − 1

)
+

(
n

k

)
=

(
n + 1

k

)
.

�

Justification. Properties 1), 2), and 3) are easy consequences of the definition of binomial
coefficients.

We will show the property 4): We have(
n

k − 1

)
+

(
n

k

)
=

n!

(n− k + 1)! (k − 1)!
+

n!

(n− k)! k!
=

n!

(n− k)! (k − 1)!

(
1

n− k + 1
+

1

k

)
=

n!

(n− k)! (k − 1)!

(
n + 1

(n− k + 1) k

)
=

(n + 1)!

(n + 1− k)! k!
=

(
n + 1

k

)
.

�
Remark. The last property from 8.2.9 is a basis of so called Pascal triangle.

8.2.10 Variations and Combinations with Repetition. If we allow repetitions then
the number of k-variations of n elements is

nk.

�
Justification. Indeed, every chosen element can be one of the n elements. Since there are k
elements to be chosen, the multiplication principle gives the total number nk. �

If we choose k elements of A where repetition is allowed then the number of combinations
is (

n + k − 1

k

)
=

(n + k − 1)!

k! (n− 1)!
.

�
Idea of a justification. Let us show the idea on an example. Assume that we should choose
strings of length 4 consisting of letters from the set {A,B,C,D,X, Y }, repetitions are allowed,
but the order letters is not important. Hence, AAAX, CXXY are examples of such strings,
and strings AAAX, AXAA, AAXA are considered to be the same. How many distinct strings
can be formed?

Any such string can be represented as an 9-tuple consisting of five symbols | and four
symbols ·. The symbol | shows the change of a letter (so we have 6− 1 = 5 of them, indeed,
change from A to B, from B to C, from C to D, from D to X, and from X to Y ). The symbol
· stands for a letter at the respective positions in the list {A,B,C,D,X, Y }. For instance

AAAX is represented by · · · | | | | · |

Indeed, there are three A’s, no B, no C, no D, one X, and no Y . Similarly,

CXXY is represented by | | · | | · · | ·

Indeed, there is no A, no B, one C, two X’s, and one Y .

Hence, such a string is represented by choosing four · out of nine positions where a · can
be placed (or equivalently, by choosing five | out of nine positions where | can be placed).
Therefore, the number of distinct string is(

4 + 6− 1

4

)
=

(
4 + 6− 1

6− 1

)
.

Marie Demlova: Discrete Mathematics and Graphs Lect. 13: January 8th and 9th, 2018



76 [170820-1532 ] Chapter 8. Combinatorics

Generally, we choose subsets of k elements out of a set of k + n− 1 distinct places, which
equals to (

n + k − 1

k

)
.

8.2.11 Example. In a shop 6 types of chocolate bars are sold. Three friends come to a
shop and each of them buys one chocolate bar. How many ways could that be done if

1) each friend chooses different type of chocolate bars;
2) they may choose the same type of chocolate bars?

Solution.

1) Call the friends A, B, and C. The number of different choices is 6!
3! = 120, since we

choose triples (where the order is important) out of 6 different types and there is no repetition.

2) If repetitions are allowed then there are 6 · 6 · 6 = 216 possibilities.

8.2.12 Binomial Theorem. Let us recall the binomial theorem.

Theorem. Let n be a natural number. Then for every real numbers x, y it holds that

(x + y)n =

n∑
k=0

(
n

k

)
xn−k yk.

�

8.2.13 Principle of Inclusion and Exclusion. The addition principle deals with the
number of elements which a union of pairwise disjoint sets has. But often we need to know
the number of elements a union of two sets A and B has even when A and B are not disjoint.

Theorem. For any sets A, B, C we have

|A ∪B| = |A|+ |B| − |A ∩B|.

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|.

�
Justification. The formula for the number of elements that A ∪B has is evident. Indeed, we
sum the number of elements of the both sets and subtract the number of elements of their
intersection, since they were calculated twice.

The justification for a union of three sets is similar, only tedious and we omit it. �

8.2.14 Proposition. Let A and B be two sets, |A| = n, |B| = k. Then there are kn

distinct mappings from A to B. �

Justification. The proposition above is an easy consequence of the multiplication principle.
Denote A = {a1, . . . , an}, B = {b1, . . . , bk}. �

8.2.15 Dirichlet’s, Pigeonhole Principle. This principle is an easy observation but
applicable in many counting problems.

Theorem (Pigeonhole principle). Let A and B be two sets, |A| = n, |B| = k. If n > k
then there does not exist a one-to-one mapping from A to B. �

Justification. We will use the multiplication principle. Denote A = {a1, a2, . . . , an}. Let us
construct an arbitrary mapping f :A → B which could be one-to-one. For f(a1) we have k
different choices, for f(a2) only k − 1 (indeed, we cannot use f(a1)), for f(a3) only k − 2
choices, etc, for f(ak) only a single element of B. Since n > k, there is ak+1 ∈ A and f(ak+1)
must be the same as some of f(a1), f(a2), . . . , f(ak). Hence, f is not one-to-one. �
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8.3 Asymptotic Growth of Functions

8.3.1 Symbol O. Let g(n) be a nonnegative function. We say that a nonnegative function
f(n) is O(g(n)) if there exists a positive constant c and a natural number n0 such that

f(n) ≤ c g(n) for every n ≥ n0.

O(g(n)) can be considered as a class of nonnegative function f(n):

O(g(n)) = {f(n) | ∃c > 0, n0 such that f(n) ≤ c g(n) ∀n ≥ n0}.

8.3.2 Symbol Ω. Let g(n) be a nonnegative function. We say that a nonnegative function
f(n) is Ω(g(n)) if there exists a positive constant c and a natural number n0 such that

f(n) ≥ c g(n) for every n ≥ n0.

Ω(g(n)) can be considered as a class of nonnegative functions f(n):

Ω(g(n)) = {f(n) | ∃c > 0, n0 such that f(n) ≥ c g(n) ∀n ≥ n0}.

8.3.3 Remark. We have f(n) is Ω(g(n)) if and only if g(n) is O(f(n)).

8.3.4 Symbol Θ. Let g(n) be a nonnegative function. We say that a nonnegative function
f(n) is Θ(g(n)) if there exist positive constants c1, c2 and a natural number n0 such that

c1 g(n) ≤ f(n) ≤ c2 g(n) for every n ≥ n0.

Θ(g(n)) can be considered as a class of nonnegative functions f(n):

Θ(g(n)) = {f(n) | ∃c1, c2 > 0, n0 such that c1 g(n) ≤ f(n) ≤ c2 g(n) ∀n ≥ n0}.

8.3.5 Remark. f(n) is Θ(g(n)) if and only if f(n) is O(g(n)) and Ω(g(n)).

8.3.6 Notation. Since the symbols O,Ω,Θ represent sets of functions, we write f(n) ∈
O(g(n)). Some authors prefer the notation f(n) = O(g(n)). If the later notation is used it is
necessary to take in mind that the equality sigh used there does not have all the properties
as a classical equality has. Similarly for other symbols.

8.3.7 Proposition. f(n) ∈ Θ(g(n)) if and only if g(n) ∈ Θ(f(n)).

8.3.8 Examples.

1. For every a > 1 and b > 1 we have

loga(n) ∈ Θ(logb(n)).

2. The logarithm with base 2 is usually denoted by lg, i.e. lg(n) = log2(n). It holds that

lg n! ∈ Θ(n lg n).

The second part of the above proposition follows from the following theorem.

8.3.9 Theorem (Gauss). For every n ≥ 1 it holds that

n
n
2 ≤ n! ≤

(
n + 1

2

)n

.
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