Exercise sheet 6

1. Consider the relation on \mathbb{R} given by $x R y$ iff $y=|x|$. Draw in the plane \mathbb{R}^{2} the relations $R, R^{-1}, R \circ R^{-1}$, $R^{-1} \circ R$.
2. Recall the definition of injective, surjective, and bijective function. Show that given a function $f: A \rightarrow B$, the inverse relation f^{-1} is a function if and only if f is a bijection.
3. A relation R on the closed interval $[-2,2]$ is given by

$$
x R y \quad \text { if and only if } \quad(x+y)^{2} \leq 2(x-y)^{2}-2
$$

a) Is R reflexive? Is it symmetric?
b) Decide, whether $1\left(R^{-1} \circ R\right) 0$ (whether 1 is in relation with 0 , where the relation considered is the composition $\left.R^{-1} \circ R\right)$.
4. Consider the following relation R on \mathbb{N}. Is it reflexive, symmetric, antisymmetric, transitive?
a) $x R y$ if and only if $x+y \geq 50$,
b) $x R y$ if and only if $x+y$ is even,
c) $x R y$ if and only if $x \cdot y$ is even,
d) $x R y$ if and only if $x+y$ is a multiple of three,
e) $x R y$ if and only if $x \mid y$,
f) $x R y$ if and only if $x \leq y$,
g) $x R y$ if and only if $x \geq y$,
h) $x R y$ if and only if $x<y$,
5. Check that the following relations are equivalences. For each of them, describe the equivalence classes.
a) $A=\mathbb{C}, x \sim y$ if and only if $|x|=|y|$,
b) $A=\mathbb{R}, x \sim y$ if and only if $x-y \in \mathbb{Z}$,
c) $A=\mathbb{Z}, x \sim y$ if and only if $x^{2} \equiv y^{2}(\bmod 5)$.
6. Let R, S be relations from A to B. Prove that
a) $(R \cup S)^{-1}=R^{-1} \cup S^{-1}$,
b) $(R \cap S)^{-1}=R^{-1} \cap S^{-1}$.

