Exercise sheet 6

1. Consider the relation on \mathbb{R} given by xRy iff y = |x|. Draw in the plane \mathbb{R}^2 the relations $R, R^{-1}, R \circ R^{-1}, R^{-1} \circ R$.

2. Recall the definition of *injective*, *surjective*, and *bijective* function. Show that given a function $f: A \to B$, the inverse relation f^{-1} is a function if and only if f is a bijection.

3. A relation R on the closed interval [-2, 2] is given by

xRy if and only if $(x+y)^2 \le 2(x-y)^2 - 2$

- a) Is R reflexive? Is it symmetric?
- b) Decide, whether $1(R^{-1} \circ R)0$ (whether 1 is in relation with 0, where the relation considered is the composition $R^{-1} \circ R$).

4. Consider the following relation R on \mathbb{N} . Is it reflexive, symmetric, antisymmetric, transitive?

a) xRy if and only if x + y ≥ 50,
b) xRy if and only if x + y is even,
c) xRy if and only if x ⋅ y is even,
d) xRy if and only if x + y is a multiple of three,
e) xRy if and only if x | y,

- f) xRy if and only if $x \leq y$,
- g) xRy if and only if $x \ge y$,
- h) xRy if and only if x < y,

5. Check that the following relations are equivalences. For each of them, describe the equivalence classes.

a) $A = \mathbb{C}, x \sim y$ if and only if |x| = |y|, b) $A = \mathbb{R}, x \sim y$ if and only if $x - y \in \mathbb{Z}$, c) $A = \mathbb{Z}, x \sim y$ if and only if $x^2 \equiv y^2 \pmod{5}$.

6. Let R, S be relations from A to B. Prove that

 $\begin{array}{l} {\rm a)} \ (R\cup S)^{-1}=R^{-1}\cup S^{-1},\\ {\rm b)} \ (R\cap S)^{-1}=R^{-1}\cap S^{-1}. \end{array}$