Exercise sheet 8

- 1. Use Euler's theorem to calculate the remainder when dividing 5^{676} by 306.
- **2.** Solve the congruence $5^{676}x \equiv 3(2x+1) \pmod{306}$.

Definition. A group (G, \cdot) is called **cyclic** if there exists an element $a \in G$ such that $G = \langle a \rangle$.

- **3.** Show that $(\mathbb{Z}_{11}^{\times}, \cdot)$ is cyclic. Find all possible generating elements $a \in \mathbb{Z}_{11}^{\times}$.
- **4.** Decide, whether $(\mathbb{Z}_8^{\times}, \cdot)$ is cyclic.
- **5.** Consider the group $(\mathbb{Z}_{17}^{\times}, \cdot)$. Determine the order of the element $[2] \in \mathbb{Z}_{17}^{\times}$.

6. Show that $(\mathbb{Z}_{17}^{\times}, \cdot)$ is cyclic. Find all possible generating elements $a \in \mathbb{Z}_{17}^{\times}$. (*Hint:* Observe that if a is not a generator, then neither its powers a^i are generators.)

7. For every $d \mid 16$ find a subgroup $H \subset \mathbb{Z}_{17}^{\times}$ of order d.