Exercise sheet 1

1. Consider the following propositional formula. For which truth valuation is it true? Write down the truth table!

 $\text{a)} \ (x \Rightarrow y) \Rightarrow x \qquad \text{b)} \ (x \lor y) \Leftrightarrow (y \Rightarrow x) \qquad \text{c)} \ (x \land y) \Rightarrow \neg x \qquad \text{d)} \ (x \Rightarrow (y \lor z)) \lor ((y \land z) \Rightarrow x)$

2. Which of the above propositional formulas are satisfiable? Which of them are tautologies? Which of them are contradictions?

3. Think about the following famous tautologial consequences. Do they make intuitive sense? Prove at least some of them.

b) $\alpha \models (\alpha \lor \beta)$ (addition) c) $((\alpha \Rightarrow \beta) \land \alpha) \models \beta$ (addition) d) $((\alpha \Rightarrow \beta) \land \neg \beta) \models \neg \alpha$ (modus ponens / direct reasoning) e) $((\alpha \lor \beta) \land \neg \alpha) \models \beta$ (disjunctive syllogism) f) $(\neg (\alpha \land \beta) \land \alpha) \models \neg \beta$ (conjunctive syllogism) g) $((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \gamma)) \models (\alpha \Rightarrow \gamma)$ (hypothetical syllogism / transitivity of \Rightarrow)	a) $(\alpha \land \beta) \models \alpha$	(simplification)
$\begin{array}{ll} c) & ((\alpha \Rightarrow \beta) \land \alpha) \models \beta & (modus \text{ ponens / direct reasoning}) \\ d) & ((\alpha \Rightarrow \beta) \land \neg \beta) \models \neg \alpha & (modus \text{ tollens / indirect reasoning}) \\ e) & ((\alpha \lor \beta) \land \neg \alpha) \models \beta & (disjunctive syllogism) \\ f) & (\neg(\alpha \land \beta) \land \alpha) \models \neg \beta & (conjunctive syllogism) \\ g) & ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \gamma)) \models (\alpha \Rightarrow \gamma) & (hypothetical syllogism / transitivity of \Rightarrow) \end{array}$	b) $\alpha \models (\alpha \lor \beta)$	(addition)
$ \begin{array}{ll} \text{d)} & ((\alpha \Rightarrow \beta) \land \neg \beta) \models \neg \alpha & (\text{modus tollens / indirect reasoning}) \\ \text{e)} & ((\alpha \lor \beta) \land \neg \alpha) \models \beta & (\text{disjunctive syllogism}) \\ \text{f)} & (\neg (\alpha \land \beta) \land \alpha) \models \neg \beta & (\text{conjunctive syllogism}) \\ \text{g)} & ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \gamma)) \models (\alpha \Rightarrow \gamma) & (\text{hypothetical syllogism / transitivity of } \Rightarrow) \end{array} $	c) $((\alpha \Rightarrow \beta) \land \alpha) \models \beta$	(modus ponens / direct reasoning)
e) $((\alpha \lor \beta) \land \neg \alpha) \models \beta$ (disjunctive syllogism) f) $(\neg(\alpha \land \beta) \land \alpha) \models \neg \beta$ (conjunctive syllogism) g) $((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \gamma)) \models (\alpha \Rightarrow \gamma)$ (hypothetical syllogism / transitivity of \Rightarrow)	d) $((\alpha \Rightarrow \beta) \land \neg \beta) \models \neg \alpha$	(modus tollens / indirect reasoning)
$ \begin{array}{ll} f) \ (\neg(\alpha \land \beta) \land \alpha) \models \neg \beta & (\text{conjunctive syllogism}) \\ g) \ ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \gamma)) \models (\alpha \Rightarrow \gamma) & (\text{hypothetical syllogism / transitivity of } \Rightarrow) \end{array} $	e) $((\alpha \lor \beta) \land \neg \alpha) \models \beta$	(disjunctive syllogism)
g) $((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \gamma)) \models (\alpha \Rightarrow \gamma)$ (hypothetical syllogism / transitivity of \Rightarrow)	f) $(\neg(\alpha \land \beta) \land \alpha) \models \neg\beta$	(conjunctive syllogism)
	g) $((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \gamma)) \models (\alpha \Rightarrow \gamma)$	(hypothetical syllogism / transitivity of $\Rightarrow)$

4. Think about the following famous tautologial equivalences. Do they make intuitive sense? Prove at least some of them.

 $\begin{array}{ll} \text{a)} (\alpha \wedge \alpha) \models \alpha, (\alpha \vee \alpha) \models \alpha & (\text{idempotent laws}) \\ \text{b)} \neg \neg \alpha \models \alpha & (\text{double negative}) \\ \text{c)} (\alpha \wedge \beta) \models (\beta \wedge \alpha), (\alpha \vee \beta) \models (\beta \vee \alpha) & (\text{double negative}) \\ \text{d)} ((\alpha \wedge \beta) \wedge \gamma) \models (\alpha \wedge (\beta \wedge \gamma)), ((\alpha \vee \beta) \vee \gamma) \models (\alpha \vee (\beta \vee \gamma)) & (\text{associativity of } \wedge \text{ and } \vee) \\ \text{e)} \neg (\alpha \wedge \beta) \models \neg \alpha \vee \neg \beta, \neg (\alpha \vee \beta) \models \neg \alpha \wedge \neg \beta & (\text{de Morgan's laws}) \\ \text{f)} (\alpha \wedge (\beta \vee \gamma) \models ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma), (\alpha \vee (\beta \wedge \gamma)) \models ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) & (\text{distributivity laws}) \\ \text{g)} (\alpha \Rightarrow \beta) \models (\neg \beta \Rightarrow \neg \alpha) & (\text{contrapositive}) \end{array}$