Exercise sheet 6

1. Consider the relation on \mathbb{R} given by xRy iff y = |x|. Draw in the plane \mathbb{R}^2 the relations R and R^{-1} .

2. Consider the sets $A = \{e, f, g, h\}$, $B = \{1, 2, 3, 4, 5\}$. For the following relations, draw a suitable graphical representation of these relations.

- a) $R = \{(e, 2), (e, 3), (e, 4), (f, 1), (g, 3), (g, 4)\} \subset A \times B.$
- b) $S \subseteq B \times A$ defined by nSl if the word for number n contains letter l.
- c) $T \subseteq B \times B$ defined by nTm if $2n \leq m$.
- **3.** Decide, whether the relation T from befor is reflexive, symmetric, antisymmetric, or transitive. For two relations $R \subseteq A \times B$ and $S \subseteq B \times C$, we define their **composition**

$$R \circ S = \{(x, z) \mid (\exists y \in B)(xRy \land ySz)\} \subset A \times C.$$

4. Find

a) $R \circ S$, b) $S \circ R$, c) $T \circ T$, d) $R \circ T$, e) $T \circ S$.

5. Consider the following relation R on \mathbb{N} . Is it reflexive, symmetric, antisymmetric, transitive?

a) xRy if and only if x + y ≥ 50,
b) xRy if and only if x + y is even,
c) xRy if and only if x · y is even,
d) xRy if and only if x + y is a multiple of three,
e) xRy if and only if x ≤ y,
f) xRy if and only if x ≥ y,
g) xRy if and only if x ≥ y,
h) xRy if and only if x < y,

6. Check that the following relations are equivalences. For each of them, describe the equivalence classes.

- a) $A = \mathbb{C}, x \sim y$ if and only if |x| = |y|,
- b) $A = \mathbb{R}, x \sim y$ if and only if $x y \in \mathbb{Z}$,