Exercise sheet 13

1. Find the minimal spanning tree of the weighted graph, where the weights are given as in the following matrix (– denotes no edge, a number denotes the weight)

(-	9	13	5	—	7	—	9 \
9	—	13	—	4	—	—	14
13	13	_	6	5	4	9	2
5	_	6	_	4	_	_	_
-	4	5	4	_	5	_	1
7	_	4	_	5	_	15	8
-	_	9	_	_	15	_	7
$\setminus 9$	14	2	—	1	8	$\overline{7}$	_/

2. Consider the directed graph given by the following adjacency matrix $(A_{ij} = 1 \text{ means that } (i, j) \text{ is an edge, so } i \to j)$. Find the topological order of its vertices.

(0)	1	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	1	0	1	0	1	1	0	1
0	0	1	0	0	0	0	0	0	1	0	0
0	0	0	0	1	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	1	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	1	0	0	0
1	1	0	0	1	0	0	0	0	0	0	0
$\setminus 0$	1	0	0	0	0	0	0	0	0	0	0/

3. Consider the directed graph G = (V, E) with vertex set $V = \{1, \dots, 12\}$ and edge set

$$E = \{(1,3), (2,1), (2,6), (2,7), (2,9), (2,12), (3,4), (4,8), (4,11), (5,3), (5,8), (6,4), (6,7), (6,9), (6,10), (6,12), (7,1), (7,5), (7,10), (8,3), (11,3), (11,10), (12,8)\}.$$

Decide whether it is acyclic.

4. Determine the strictly connected components of the following graph. How does its condensation look like?

5. Give an example of a simple directed graph which has 9 vertices, 12 directed edges, 2 components of connectivity, and 4 strongly connected components.