Homework 2B - solution

1. Consider the following formula of predicate logic:

$$
[(\forall y(R(x, y) \wedge P(y))) \Rightarrow(\forall x \forall y Q(x, y))] \wedge(\forall x Q(x, a)) .
$$

Construct its negation and refurmulate it in such a way that the sign \neg is in front of the "atomic" propositional functions only.

We use the fact that $\neg(\alpha \wedge \beta)=\neg \alpha \vee \neg \beta$ and $\neg(\alpha \Rightarrow \beta)=\alpha \wedge \neg \beta$. In addition, we need to exchange the quantifiers $\forall \leftrightarrow \exists$ when negating quantified formulas. In the following derivation, each line is equivalent to the preceding one:

$$
\begin{gathered}
\neg([(\forall y(R(x, y) \wedge P(y))) \Rightarrow(\forall x \forall y Q(x, y))] \wedge(\forall x Q(x, a))) \\
\neg[(\forall y(R(x, y) \wedge P(y))) \Rightarrow(\forall x \forall y Q(x, y))] \vee \neg(\forall x Q(x, a)) \\
{[(\forall y(R(x, y) \wedge P(y))) \wedge \neg(\forall x \forall y Q(x, y))] \vee \neg(\forall x Q(x, a))} \\
{[(\forall y(R(x, y) \wedge P(y))) \wedge(\exists x \exists y \neg Q(x, y))] \vee(\exists x \neg Q(x, a))}
\end{gathered}
$$

2. Write the negations of the following statements
a) $(\forall \varepsilon>0)(\forall \delta>0)(\varepsilon<\delta)$
b) $(\forall \varepsilon>0)(\exists \delta>0)(\varepsilon<\delta)$
c) $(\exists \varepsilon>0)(\forall \delta>0)(\varepsilon<\delta)$
d) $(\exists \varepsilon>0)(\exists \delta>0)(\varepsilon<\delta)$

Which of them are true? Try to prove or disprove by rigorous argumentation.
For (a), the negation says $(\exists \varepsilon>0)(\exists \delta>0)(\varepsilon \geq \delta)$. The negation is true and hence the original statement is false. Proof: Just take $\varepsilon=2, \delta=1$. Then it is indeed true that $\varepsilon \geq \delta$.

For (b), the negation says $(\exists \varepsilon>0)(\forall \delta>0)(\varepsilon \geq \delta)$. The original statement is true and hence the negation is false. Proof: Take arbitrary ${ }^{1} \varepsilon>0$. We need to find $\delta>0$ such that $\varepsilon<\delta$. Just take $\delta:=\varepsilon+1$. (Or $\delta:=2 \varepsilon$ or whatever.) Then indeed $\varepsilon<\delta$.

For (c), the negation says $(\forall \varepsilon>0)(\exists \delta>0)(\varepsilon \geq \delta)$. The negation is true and hence the original statement is false. Proof: Take arbitrary $\varepsilon>0$. We need to find $\delta>0$ such that $\varepsilon \geq \delta$. Just take $\delta:=\varepsilon / 2$. Then indeed $\varepsilon<\delta$.

For (d), the negation says $(\forall \varepsilon>0)(\forall \delta>0)(\varepsilon \geq \delta)$. The original statement is true and hence the negation is false. Proof: Just take $\varepsilon=1, \delta=2$. Then it is indeed true that $\varepsilon<\delta$.

[^0]
[^0]: ${ }^{1}$ The word arbitrary gets sometimes misinterpreted if you are not used to reading mathematical texts. If I say that I will prove something for arbitrary x (or if I ask you to do so), what I mean is not that one can choose x at their convenience and do the proof only for this particular instance. Quite the opposite: I am claiming that the argument should work for any x.

