Homework 2B – solution

1. Consider the following formula of predicate logic:

$$[(\forall y \, (R(x,y) \land P(y))) \Rightarrow (\forall x \, \forall y \, Q(x,y))] \land (\forall x \, Q(x,a)).$$

Construct its negation and refurmulate it in such a way that the sign \neg is in front of the "atomic" propositional functions only.

We use the fact that $\neg(\alpha \land \beta) = \neg \alpha \lor \neg \beta$ and $\neg(\alpha \Rightarrow \beta) = \alpha \land \neg \beta$. In addition, we need to exchange the quantifiers $\forall \leftrightarrow \exists$ when negating quantified formulas. In the following derivation, each line is equivalent to the preceding one:

$$\begin{split} &\neg \Big(\left[(\forall y \left(R(x, y) \land P(y) \right) \right) \Rightarrow (\forall x \forall y Q(x, y)) \right] \land (\forall x Q(x, a)) \Big) \\ &\neg \left[(\forall y \left(R(x, y) \land P(y) \right) \right) \Rightarrow (\forall x \forall y Q(x, y)) \right] \lor \neg (\forall x Q(x, a)) \\ &\left[(\forall y \left(R(x, y) \land P(y) \right) \right) \land \neg (\forall x \forall y Q(x, y)) \right] \lor \neg (\forall x Q(x, a)) \\ &\left[(\forall y \left(R(x, y) \land P(y) \right) \right) \land (\exists x \exists y \neg Q(x, y)) \right] \lor (\exists x \neg Q(x, a)) \end{split}$$

2. Write the negations of the following statements

 $\begin{array}{l} \mathbf{a}) \ (\forall \varepsilon > 0) (\forall \delta > 0) (\varepsilon < \delta) \\ \mathbf{b}) \ (\forall \varepsilon > 0) (\exists \delta > 0) (\varepsilon < \delta) \\ \mathbf{c}) \ (\exists \varepsilon > 0) (\forall \delta > 0) (\varepsilon < \delta) \\ \mathbf{d}) \ (\exists \varepsilon > 0) (\exists \delta > 0) (\varepsilon < \delta) \end{array}$

Which of them are true? Try to prove or disprove by rigorous argumentation.

For (a), the negation says $(\exists \varepsilon > 0)(\exists \delta > 0)(\varepsilon \ge \delta)$. The negation is true and hence the original statement is false. Proof: Just take $\varepsilon = 2$, $\delta = 1$. Then it is indeed true that $\varepsilon \ge \delta$.

For (b), the negation says $(\exists \varepsilon > 0)(\forall \delta > 0)(\varepsilon \ge \delta)$. The original statement is true and hence the negation is false. Proof: Take arbitrary¹ $\varepsilon > 0$. We need to find $\delta > 0$ such that $\varepsilon < \delta$. Just take $\delta := \varepsilon + 1$. (Or $\delta := 2\varepsilon$ or whatever.) Then indeed $\varepsilon < \delta$.

For (c), the negation says $(\forall \varepsilon > 0)(\exists \delta > 0)(\varepsilon \ge \delta)$. The negation is true and hence the original statement is false. Proof: Take arbitrary $\varepsilon > 0$. We need to find $\delta > 0$ such that $\varepsilon \ge \delta$. Just take $\delta := \varepsilon/2$. Then indeed $\varepsilon < \delta$.

For (d), the negation says $(\forall \varepsilon > 0)(\forall \delta > 0)(\varepsilon \ge \delta)$. The original statement is true and hence the negation is false. Proof: Just take $\varepsilon = 1$, $\delta = 2$. Then it is indeed true that $\varepsilon < \delta$.

¹ The word *arbitrary* gets sometimes misinterpreted if you are not used to reading mathematical texts. If I say that I will prove something for arbitrary x (or if I ask you to do so), what I mean is not that one can choose x at their convenience and do the proof only for this particular instance. Quite the opposite: I am claiming that the argument should work for any x.